(本小题满分12分)
已知函数f(x)=alnx,(a∈R)g(x)=x2,记F(x)=g(x)-f(x)
(Ⅰ)判断F(x)的单调性;
(Ⅱ)当a≥时,若x≥1,求证:g(x-1)≥f();
(Ⅲ)若F(x)的极值为,问是否存在实数k,使方程g(x)-f(1+x2)=k有四个不同实数根?若存在,求出实数k的取值范围;若不存在,请说明理由。
解:(Ⅰ)的定义域为(0,+∞),
当时,>0恒成立 ∴在(0,+∞)上单调递增;
当>0时,若,<0 ∴在(0,)上单调递减;
若>,>0,∴在(,+∞)上单调递增.............4分
(Ⅱ)令,则,
所以在[1,+∞)上单调递增,∴,∴...8分
(Ⅲ)由(1)知仅当>0时,在=处取得极值
由可得=2 ∴...1
令,得...2
方程1有四个不同的根,则方程2有两个不同的正根,
令,当直线与曲线相切时,由导数知识可得切点坐标(3,) ∴切线方程为,其在y轴上截距为;
当直线在y轴上截距时,和在y轴右侧有两个不同交点,所以k的取值范围为(,0)......................................12分
(附:也可用导数求解)
【解析】略
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com