精英家教网 > 高中数学 > 题目详情
一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示. 某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)

给出以下3个论断:①0点到3点只进水不出水;C②3点到4点不进水只出水;③4点到6点不进水不出水. 则正确论断的个数是(   )
A.0B. 1C. 2D. 3
B

试题分析:由甲,乙图得进水速度1,出水速度2,结合丙图中直线的斜率解答:只进水不出水时,蓄水量增加是2,故①对;∴不进水只出水时,蓄水量减少是2,故②不对;二个进水一个出水时,蓄水量减少也是0,故③不对;只有①满足题意,故答案为B。
点评:数形结合是解决此题的关键,本题容易错选成①③,其实二个进水一个出水时,蓄水量减少也是0,这是个动态中的零增量。      
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知函数,且.的导函数,的图像如右图所示.若正数满足,则的取值范围是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的图象大致是

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

时,函数的图象只可能是  (  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的定义域为开区间,导函数 内的图象如图所示,则函数在开区间内有极小值点
A.1个B.2个 C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题15分)已知函数.
(1)当时,求的单调递增区间;
(2)是否存在,使得对任意的,都有恒成立.若存在,求出的取值范围; 若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的图象是(   )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金(单位:万元)随销售利润(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不能超过利润的%.现有三个奖励模型:,分析与推导哪个函数模型能符合该公司的要求?并给予证明.(注:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数的图像如图所示,则不等式 的解集是(    )
A.B.
C.D.

查看答案和解析>>

同步练习册答案