ÒÑÖªº¯Êýf(x)=
x
x+2
£¬x¡Ê(
1
2
£¬1]
-
1
2
x+
1
4
£¬x¡Ê[0£¬
1
2
]
£¬g(x)=asin(
¦Ð
3
x+
3¦Ð
2
)-2a+2(a£¾0)
£¬¸ø³öÏÂÁнáÂÛ£º
¢Ùº¯Êýf£¨x£©µÄÖµÓòΪ[0£¬
1
3
]
£»
¢Úº¯Êýg£¨x£©ÔÚ[0£¬1]ÉÏÊÇÔöº¯Êý£»
¢Û¶ÔÈÎÒâa£¾0£¬·½³Ìf£¨x£©=g£¨x£©ÔÚ[0£¬1]ÄÚºãÓн⣻
¢ÜÈô´æÔÚx1£¬x2¡Ê[0£¬1]£¬Ê¹µÃf£¨x1£©=g£¨x2£©³ÉÁ¢£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ
5
9
¡Üa¡Ü
4
5
£®
ÆäÖÐËùÓÐÕýÈ·½áÂÛµÄÐòºÅÊÇ
 
£®
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺º¯ÊýµÄÐÔÖʼ°Ó¦ÓÃ
·ÖÎö£º¢Ùµ±x¡Ê(
1
2
£¬1]
ʱ£¬ÀûÓÃf£¨x£©=
x
x+2
=1-
2
x+2
µ¥µ÷µÝÔö£¬¿ÉµÃf(
1
2
)£¼f(x)¡Üf(1)
£®
µ±x¡Ê[0£¬
1
2
]
ʱ£¬º¯Êýf£¨x£©=-
1
2
x+
1
4
£¬ÀûÓÃÒ»´Îº¯ÊýµÄµ¥µ÷ÐԿɵÃf(
1
2
)¡Üf(x)¡Üf(0)
£®
¼´¿ÉµÃµ½º¯Êýf£¨x£©µÄÖµÓò£®
¢ÚÀûÓÃÓÕµ¼¹«Ê½¿ÉµÃg£¨x£©=-acos
¦Ð
3
x
-2a+2£¬ÀûÓÃÓàÏÒº¯ÊýµÄµ¥µ÷ÐÔ£¬½ø¶øµÃ³ög£¨x£©ÔÚ[0£¬1]Éϵ¥µ÷ÐÔ£®
¢ÛÓÉ¢Ú¿ÉÖª£ºg£¨0£©¡Üg£¨x£©¡Üg£¨1£©£¬ÈôÈÎÒâa£¾0£¬·½³Ìf£¨x£©=g£¨x£©ÔÚ[0£¬1]ÄÚºãÓн⣬
Ôò±ØÐëÂú×ãf£¨x£©µÄÖµÓò[0£¬
1
3
]
⊆{g£¨x£©|x¡Ê[0£¬1]}£®½â³öÅж¨¼´¿É£®
¢Ü´æÔÚx1£¬x2¡Ê[0£¬1]£¬Ê¹µÃf£¨x1£©=g£¨x2£©³ÉÁ¢£¬Ôò
g(x)min¡Üf(x)max
g(x)max¡Ýf(x)min
½â³ö¼´¿É£®
½â´ð£º ½â£º¢Ùµ±x¡Ê(
1
2
£¬1]
ʱ£¬f£¨x£©=
x
x+2
=1-
2
x+2
µ¥µ÷µÝÔö£¬¡àf(
1
2
)£¼f(x)¡Üf(1)
£¬¼´
1
5
£¼f(x)¡Ü
1
3
£®
µ±x¡Ê[0£¬
1
2
]
ʱ£¬Óɺ¯Êýf£¨x£©=-
1
2
x+
1
4
µ¥µ÷µÝ¼õ£¬¡àf(
1
2
)¡Üf(x)¡Üf(0)
£¬¼´0¡Üf(x)¡Ü
1
4
£®
¡àº¯Êýf£¨x£©µÄÖµÓòΪ[0£¬
1
3
]
£®Òò´Ë¢ÙÕýÈ·£®
¢Úg£¨x£©=-acos
¦Ð
3
x
-2a+2£¬¡ßx¡Ê[0£¬1]£¬¡à0¡Ü
¦Ðx
3
¡Ü
¦Ð
3
£¬Òò´Ëcos
¦Ðx
3
ÔÚ[0£¬1]Éϵ¥µ÷µÝ¼õ£¬
ÓÖa£¾0£¬¡àg£¨x£©ÔÚ[0£¬1]Éϵ¥µ÷µÝÔö£¬Òò´ËÕýÈ·£®
¢ÛÓÉ¢Ú¿ÉÖª£ºg£¨0£©¡Üg£¨x£©¡Üg£¨1£©£¬¡à-3a+2¡Üg(x)¡Ü-
5
2
a+2
£®
ÈôÈÎÒâa£¾0£¬·½³Ìf£¨x£©=g£¨x£©ÔÚ[0£¬1]ÄÚºãÓн⣬
Ôò±ØÐëÂú×ãf£¨x£©µÄÖµÓò[0£¬
1
3
]
⊆{g£¨x£©|x¡Ê[0£¬1]}£®
¡à-3a+2¡Ü0£¬-
5
2
a+2¡Ý
1
3
£¬½âµÃa=
2
3
£¬Òò´Ë¢Û²»ÕýÈ·£»
¢Ü´æÔÚx1£¬x2¡Ê[0£¬1]£¬Ê¹µÃf£¨x1£©=g£¨x2£©³ÉÁ¢£¬Ôò
g(x)min¡Üf(x)max
g(x)max¡Ýf(x)min

ÓÉ¢Û¿ÉÖª£ºg(x)max=g(1)=-
5
2
a+2
£¬g£¨x£©min=g£¨0£©=-3a+2£¬
¡à-3a+2¡Ü
1
3
£¬-
5
2
a+2¡Ý0
£¬½âµÃ
5
9
¡Üa¡Ü
4
5
£¬
¡àʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ
5
9
¡Üa¡Ü
4
5
£®ÕýÈ·£®
×ÛÉÏ¿ÉÖª£ºÖ»ÓТ٢ڢÜÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Ü£®
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁ˷ֶκ¯ÊýµÄµ¥µ÷ÐÔ¡¢ºã³ÉÁ¢ÎÊÌâµÄµÈ¼Ûת»¯·½·¨µÈ»ù´¡ÖªÊ¶Óë»ù±¾¼¼ÄÜ·½·¨£¬¿¼²éÁË·ÖÎöÎÊÌâºÍ½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÉèÍÖÔ²C£º
x2
a2
+
y2
a2
=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µãΪF1£¬F2£¬¶ÌÖáµÄÁ½¸ö¶Ëµã·Ö±ðΪA£¬B£¬ÇÒÂú×ã|
F1A
+
F1B
|=|
F2A
-
F2B
|£¬ÍÖÔ²C¾­¹ýµã£¨
2
£¬1£©£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©Éè¹ýµãM£¨
2
3
£¬0£©ÇÒбÂÊΪkµÄ¶¯Ö±ÏßlÓëÍÖÔ²CÏཻÓÚP£¬QÁ½µã£¬ÎÊ£ºÔÚxÖáµÄÕý°ëÖáÉÏÊÇ·ñ´æÔÚÒ»¸ö¶¨µãT£¬Ê¹µÃÎÞÂÛÖ±ÏßlÈçºÎת¶¯£¬ÒÔPQΪֱ¾¶µÄÔ²ºã¹ý¶¨µãT£¿Èô´æÔÚ£¬Çó³öµãTµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßC£ºx2=2py£¨p£¾0£©£¬¶¨µãM£¨0£¬5£©£¬Ö±Ïßl£ºy=
p
2
ÓëyÖá½»ÓÚµãF£¬OΪԭµã£¬ÈôÒÔOMΪֱ¾¶µÄԲǡºÃ¹ýlÓëÅ×ÎïÏßCµÄ½»µã£®
£¨¢ñ£©ÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨¢ò£©¹ýµãM×÷Ö±Ïß½»Å×ÎïÏßCÓÚA£¬BÁ½µã£¬Á¬AF£¬BFÑÓ³¤½»Å×ÎïÏß·Ö±ðÓÚA¡ä£¬B¡ä£¬ÇóÖ¤£ºÅ×ÎïÏßC·Ö±ð¹ýA¡ä£¬B¡äÁ½µãµÄÇÐÏߵĽ»µãQÔÚÒ»Ìõ¶¨Ö±ÏßÉÏÔ˶¯£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¹ýµãP£¨1£¬-2£©×÷Ö±ÏßÓëÇúÏß
x=2
2
cos¦È
y=2sin¦È
£¨¦ÈΪ²ÎÊý£©ÏཻÓÚA£¬BÁ½µã£¬ÇÒ|PA|•|PB|=
2
3
£¬Çó¸ÃÖ±Ïߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èô±äÁ¿x£¬yÂú×ãÔ¼ÊøÌõ¼þ
x+3y-3¡Ý0
2x-y-3¡Ü0
x-y+1¡Ý0.
£¬Ôòz=x+yµÄ×î´óֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªcos£¨¦È+
¦Ð
4
£©=-
10
10
£¬¦È¡Ê£¨0£¬
¦Ð
2
£©£¬Ôòsin£¨2¦È-
¦Ð
3
£©=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¹Û²ìÏÂÁÐÃüÌâ
¢ÙÃüÌâ¡°¶ÔÈÎÒâµÄx£¼0£¬x3-x2+1¡Ü0¡±µÄ·ñ¶¨ÊÇ¡°´æÔÚx¡Ý0£¬x3-x2+1£¾0¡±£»
¢Úº¯Êýf£¨x£©=2x-x2µÄÁãµãÓÐ2¸ö£»¢ÛÈôº¯Êýf£¨x£©=x2-|x+a|Ϊżº¯Êý£¬ÔòʵÊýa=0£»
¢ÜÈôº¯Êýf£¨x£©=
ax-5£¬(x£¾6)
(4-
a
2
)x+4£¬(x¡Ü6)
ÔÚRÉÏÊǵ¥µ÷µÝÔöº¯Êý£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§Îª£¨1£¬8£©£®       
ÆäÖÐÕæÃüÌâµÄÐòºÅÊÇ
 
£¨Ð´³öËùÓÐÕýÈ·ÃüÌâµÄ±àºÅ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑ֪ʵÊýx£¬yÂú×ãÔ¼ÊøÌõ¼þ
x-y+1¡Ý0
x+y¡Ý0
x¡Ü1
£¬Ôòz=2x+yµÄ×îСֵÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèF1£¬F2ΪÍÖÔ²¦££º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×ó£¬ÓÒ½¹µã£¬µãMÔÚÍÖÔ²¦£ÉÏ£®Èô¡÷MF1F2Ϊֱ½ÇÈý½ÇÐΣ¬ÇÒ|MF1|=2|MF2|£¬ÔòÍÖÔ²¦£µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A¡¢
3
3
»ò
5
3
B¡¢
5
3
»ò
6
3
C¡¢
6
3
»ò
7
3
D¡¢
3
3
»ò
5
-1
4

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸