精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C:)的离心率为,且椭圆C的中心O关于直线的对称点落在直线.

1)求椭圆C的方程;

2)设PMN是椭圆C上关于x轴对称的任意两点,连接交椭圆C于另一点E,求直线的斜率取值范围,并证明直线x轴相交于定点.

【答案】1;(2,证明见解析.

【解析】

1)设点O关于直线的对称点为,根据一垂直二平分,解得,再结合离心率为,且椭圆C的中心O关于直线的对称点落在直线上,由求解.

2)设直线的方程为,且,则,与椭圆方程联立,通过,解得直线的斜率取值范围;写出直线的方程为,令,得,然后将韦达定理代入求解.

1)设点O关于直线的对称点为,则

解得

依题意,得

∴椭圆C的方程是

2)设直线的方程为,且

,消去y

解得,且

∴直线的斜率取值范围是

由韦达定理得:

直线的方程为

,解得:

∴直线x轴交于定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在三棱锥S-ABC中,侧棱SASBSC两两成等角,且长度分别为abc,设二面角S-BC-AS-ACBS-AB-C的大小为,若αβγ的大小关系是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四边形ABCD中,,_________,DC=2,在下面给出的三个条件中任选一个,补充在上面的问题中,并加以解答.(选出一种可行的方案解答,若选出多个方案分别解答,则按第一个解答记分)①;②;③.

1)求的大小;

2)求△ADC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,设点为圆轴负半轴的交点,点为圆上一点,且满足的中点在轴上.

1)当变化时,求点的轨迹方程;

2)设点的轨迹为曲线为曲线上两个不同的点,且在两点处的切线的交点在直线上,证明:直线过定点,并求此定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某校高三年级有1000人参加一次数学模拟考试,现把这次考试的分数转换为标准分,标准分的分数转换区间为,若使标准分X服从正态分布N,则下列说法正确的有( ).

参考数据:①;②;③

A.这次考试标准分超过180分的约有450

B.这次考试标准分在内的人数约为997

C.甲、乙、丙三人恰有2人的标准分超过180分的概率为

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥,四边形为平行四边形,中点.

1)求证:平面

2)求证:平面平面

3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)求函数的单调区间和极值;

2)若存在满足,证明成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(Ⅰ)当时,求的单调区间;

(Ⅱ)设的极小值点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】整数集就像一片浩瀚无边的海洋,充满了无尽的奥秘.古希腊数学家毕达哥拉斯发现220284具有如下性质:220的所有真因数之和恰好等于284,同时284的所有真因数之和也等于220,他把具有这种性质的两个整数叫做一对亲和数亲和数的发现吸引了古今中外无数数学爱好者的研究热潮.已知22028411841210292426203亲和数,把这六个数随机分成两组,一组2个数,另一组4个数,则220284在同一组的概率为(

A.B.C.D.

查看答案和解析>>

同步练习册答案