精英家教网 > 高中数学 > 题目详情
6.已知数列{an}是等比数列,a3=4,且a3是a2+4与a4+14的等差中项;数列{bn}是等差数列,b2=16,其前n项和Tn满足Tn=nλ•bn+1(λ为常数,且λ≠1).
(1)求数列{an}的通项公式:
(2)求数列{bn}的通项公式及λ的值.

分析 (1)利用等差数列与等比数列的通项公式及其性质即可得出an
(2)Tn=nλ•bn+1(λ为常数,且λ≠1),可得b1,b3,利用2b2=b1+b3,即可解出λ.再利用等差数列的通项公式即可得出.

解答 解:(1)设等比数列{an}的公比为q,∵a3=4,且a3是a2+4与a4+14的等差中项,
∴$\left\{\begin{array}{l}{{a}_{1}{q}^{2}=4}\\{2×4={a}_{1}q+4+{a}_{1}{q}^{3}+14}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{q=-2}\end{array}\right.$,或$\left\{\begin{array}{l}{{a}_{1}=16}\\{q=-\frac{1}{2}}\end{array}\right.$.
∴an=(-2)n-1,或an=$16×(-\frac{1}{2})^{n-1}$=$(-\frac{1}{2})^{n-5}$.
(2)Tn=nλ•bn+1(λ为常数,且λ≠1),
∴b1=T1=λb2=16λ,
b1+b2=2λb3,可得b3=8+$\frac{8}{λ}$,(λ≠0).
∵数列{bn}是等差数列,
∴2b2=b1+b3
∴2×16=16λ+8+$\frac{8}{λ}$,λ≠1.
解得λ=$\frac{1}{2}$.
∴b1=8,公差d=b2-b1=8.
∴bn=8+8(n-1)=8n.

点评 本题考查了等差数列与等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(1,sinθ),$\overrightarrow{b}$=(2,1).
(1)当θ=$\frac{π}{6}$时,求向量2$\overrightarrow{a}$+$\overrightarrow{b}$的坐标;
(2)若$\overrightarrow{a}$∥$\overrightarrow{b}$,且θ∈(0,$\frac{π}{2}$),求sin(θ+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.指数函数y=ax-1+1的反函数的图象过定点(2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设$\overrightarrow{a},\overrightarrow{b}$是不共线的两个向量,λ,μ∈R且$λ\overrightarrow{a}+μ\overrightarrow{b}$=0.则(  )
A.λ=μ=0B.$\overrightarrow{a}=\overrightarrow{b}=0$C.λ=0,$\overrightarrow{b}$=0D.μ=0,$\overrightarrow{a}$=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求$\underset{lim}{x→0}$$\frac{{∫}_{0}^{x}si{n}^{2}tdt}{{x}^{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在正方体ABCD-A1B1C1D1中,M是AA1上一点,P是A1B1上一点,N是D1C1中点,且DM,NP相交于一点Q,求证:
(1)Q,A1,D1三点共线;
(2)MP∥DN.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数满足f(x)=$\frac{1}{f(x+1)}$,当x∈[-1,1]时f(x)=|x|,那么函数y=f(x)的图象与函数f(x)=|log5x|的图象的交点共有(  )
A.4个B.5个C.6个D.7个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知A、B两点关于x轴对称,且到x轴距离之积为9t,线段AB与x轴交于点C(t,0),点O为坐标原点,求经过A、O、B三点的抛物线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.(1-x+x2)(x-$\frac{1}{x}$)6的展开式中的常数项为-5.

查看答案和解析>>

同步练习册答案