精英家教网 > 高中数学 > 题目详情
若方程(
1
2
)x=log2x
的解为x1,方程(
1
2
)x=log
1
2
x
的解为x2,则x1•x2的取值范围为(  )
分析:数形结合:把方程的解转化为图象的交点问题.作出图象,可得x1,x2的范围,由指数函数单调性比较出log2x1log
1
2
x2
的大小,进而可求出x1•x2的取值范围.
解答:解:x1,x2分别为函数y=(
1
2
)x
与y=log2x和y=log
1
2
x
的交点横坐标,画出图象如图:

由图知1<x1<2,0<x2<1,
由y=(
1
2
)x
单调递减,得(
1
2
)x1<(
1
2
)x2
,即log2x1log
1
2
x2
=-log2x2
所以log2x1+log2x2<0,即log2(x1x2)<0,
所以0<x1x2<1.即x1•x2的取值范围为(0,1).
故选A.
点评:本题考查函数作图及函数零点问题,属基础题.本题运用了数形结合思想和转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网A.(不等式选做题)若关于x的不等式|x+3|-|x+2|≥log2a有解,则实数a的取值范围是:
 

B.(几何证明选做题)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若
PB
PA
=
1
2
PC
PD
=
1
3
,则
BC
AD
的值为
 

C.(坐标系与参数方程选做题)设曲线C的参数方程为
x=3+2
2
cosθ
y=-1+2
2
sinθ
(θ为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=
2
cosθ-sinθ
,则曲线C上到直线l距离为
2
的点的个数为:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江西)如图,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
经过点P (1,
3
2
),离心率e=
1
2
,直线l的方程为x=4.
(1)求椭圆C的方程;
(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线C:y2=2px(p>0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点,若△BDF为等边三角形,△ABD的面积为6,则p的值为
3
3
,圆F的方程为
(x-
3
2
)2+y2=12
(x-
3
2
)2+y2=12

查看答案和解析>>

科目:高中数学 来源: 题型:

本题包括高考A,B,C,D四个选题中的B,C两个小题,每小题10分,共20分.把答案写在答题卡相应的位置上.解答时应写出文字说明、证明过程或演算步骤.
B.选修4-2:矩阵与变换
已知矩阵A=
11
21
,向量
β
=
1
2
.求向量
α
,使得A2
α
=
β

C.选修4-4:极坐标与参数方程
在直角坐标系x0y中,直线l的参数方程为
x=
1
2
t
y=
2
2
+
3
2
t
(t为参数),若以直角坐标系xOy的O点为极点,Ox为极轴,且长度单位相同,建立极坐标系,得曲线C的极坐标方程为ρ=2cos(θ-
π
4
)

(1)求直线l的倾斜角;
(2)若直线l与曲线l交于A、B两点,求AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-x2-3x,g(x)=ax2-3x+b,(a,b∈R,且a≠0,b≠0).满足f(x)与g(x)的图象在x=x0处有相同的切线l.
(I)若a=
1
2
,求切线l的方程;
(II)已知m<x0<n,记切线l的方程为:y=k(x),当x∈(m,n)且x≠x0时,总有[f(x)-k(x)]•[g(x)-k(x)]>0,则称f(x)与g(x)在区间(m,n)上“内切”,若f(x)与g(x)在区间(-3,5)上“内切”,求实数a的取值范围.

查看答案和解析>>

同步练习册答案