精英家教网 > 高中数学 > 题目详情
11.已知方程52x+1=11,则x=$\frac{lo{g}_{5}11-1}{2}$.

分析 由已知条件利用对数与指数的互化公式求解.

解答 解:∵52x+1=11,
∴2x+1=log511,
解得x=$\frac{lo{g}_{5}11-1}{2}$.
故答案为:$\frac{lo{g}_{5}11-1}{2}$.

点评 本题考查指数方程的求法,是基础题,解题时要认真审题,注意对数与指数的互化公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.若函数f(x)=|x2+ax+1|-1恰有三个零点,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.抛掷一枚质地均匀的骰子,向上的一面出现1点、2点、3点、4点、5点、6点的概率都是$\frac{1}{6}$,记事件A为,“出现奇数”,事件B为“向上的点数不超过3”,求P(A∪B).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若($\frac{2}{3}$)1+a<($\frac{9}{4}$)a,则实数a的取值范围是a>-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=mlog3x+nlog5x+2.且f($\frac{1}{2015}$)=2.则f(2015)=(  )
A.-4B.-2C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若f(x)=0在区间(a,b)内恰有一解,则函数f(x)在区间(a,b)内(  )
A.单调递减B.单调递增
C.单调递减或单调递增D.不能确定单调性

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求函数y=-$(\frac{1}{7})^{-2{x}^{2}-7x+7}$+7的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=2sin(ωx+φ)(ω>0,-π<φ<0)的图象的相邻两个对称中心的坐标分别为($\frac{π}{9}$,0),($\frac{4π}{9}$,0),为了得到f(x)的图象,只需将g(x)=2sinωx的图象(  )
A.向左平移$\frac{π}{3}$个单位B.向左平移$\frac{π}{9}$个单位
C.向右平移$\frac{π}{3}$个单位D.向右平移$\frac{π}{9}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知tan(α-$\frac{π}{12}$)=2,则tan(α-$\frac{π}{3}$)的值为$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案