精英家教网 > 高中数学 > 题目详情
20.已知函数$y=lg(x-2)+\sqrt{3-x}$,则其定义域为(2,3].

分析 根据对数函数以及二次根式的性质求出函数的定义域即可.

解答 解:由题意得:$\left\{\begin{array}{l}{x-2>0}\\{3-x≥0}\end{array}\right.$,
解得:2<x≤3,
故答案为:(2,3].

点评 本题考查了对数函数以及二次根式的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|(x-1)(3-x)<0},B={x|-3≤x≤3},则A∩B=(  )
A.(-1,2]B.(1,2]C.[-2,1)D.[-3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.点M是抛物线x2=2py(p>0)的对称轴与准线的交点,点F为抛物线的焦点,P在抛物线上,在△PFM中,sin∠PFM=λsin∠PMF,则λ的最大值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.1C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知tanθ=4,则$\frac{sinθ+cosθ}{17sinθ}+\frac{{si{n^2}θ}}{4}$的值为(  )
A.$\frac{14}{68}$B.$\frac{21}{68}$C.$\frac{68}{14}$D.$\frac{68}{21}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|2x-a|+a,a∈R,g(x)=|2x-1|
(1)当a=2时,求满足f(x)≥g(2)的x的值.
(2)当x∈R时,恒有f(x)+g(x)≥3,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上是增函数.令a=f(sin50°),b=f[cos(-50°)],c=f(-tan50°),则(  )
A.b<a<cB.c<b<aC.b<c<aD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数$f(x)=cos(2x+\frac{π}{3})+{sin^2}x$,则f(x)的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合A={x|-3≤x≤2},集合B={x|1-m≤x≤3m-1}.
(1)当m=3时,求A∩B,A∪B;   
(2)若A∩B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,x轴被曲线C2:y=x2-b截得的线段长等于C1的短轴长,C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A、B,直线MA,MB分别与C1相交于点D、E.
(Ⅰ)求C1、C2的方程;
(Ⅱ)求证:MA⊥MB:
(Ⅲ)记△MAB,△MDE的面积分别为S1,S2,若$\frac{{S}_{1}}{{S}_{2}}$=λ,求λ的最小值.

查看答案和解析>>

同步练习册答案