精英家教网 > 高中数学 > 题目详情

以直角坐标系的原点为极点O,轴正半轴为极轴,已知点P的直角坐标为(1,-5),点C的极坐标为,若直线l经过点P,且倾斜角为,圆C的半径为4.
(1).求直线l的参数方程及圆C的极坐标方程;
(2).试判断直线l与圆C有位置关系.

(1);(2)直线与圆相离.

解析试题分析:本题主要考查直线的参数方程、极坐标方程、点到直线的距离公式、直线与圆的位置关系等基础知识,意在考查考生的运算求解能力、推理论证能力以及转化思想的应用.第一问,利用已知条件列出直线的参数方程,利用极坐标与直角坐标的转化公式,得到点C的直角坐标,从而得到圆C的标准方程,再利用极坐标与直角坐标的转化公式得到圆C的极坐标方程;第二问,将直线的参数方程先转化成普通方程,利用点到直线的距离公式求出距离,与半径比较大小,来判断直线与圆的位置关系.
试题解析:(1)直线的参数方程,即为参数)
由题知点的直角坐标为,圆半径为
∴圆方程为代入
得圆极坐标方程   5分
(2)由题意得,直线的普通方程为
圆心的距离为
∴直线与圆相离.   10分
考点:直线的参数方程、极坐标方程、点到直线的距离公式、直线与圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m.经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),.以所在直线为轴,以所在直线为轴建立平面直角坐标系.
(Ⅰ)求所在直线的方程及新桥BC的长;
(Ⅱ)当OM多长时,圆形保护区的面积最大?
并求此时圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知D为△ABC的BC边上一点,⊙O1经过点B、D交AB于另一点E,⊙O2经过点C、D交AC于另一点F,⊙O1与⊙O2交于点G.

(1)求证:∠EAG=∠EFG;
(2)若⊙O2的半径为5,圆心O2到直线AC的距离为3,AC=10,AG切⊙O2于G,求线段AG的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,如图,已知椭圆E:的左、右顶点分别为,上、下顶点分别为.设直线的倾斜角的正弦值为,圆与以线段为直径的圆关于直线对称.

(1)求椭圆E的离心率;
(2)判断直线与圆的位置关系,并说明理由;
(3)若圆的面积为,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知点在圆内,动直线过点且交圆两点,若△ABC的面积的最大值为,则实数的取值范围为      

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以点为圆心的圆与直线相切,过点的动直线与圆相交于两点.
(1)求圆的方程;
(2)当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以点为圆心的圆经过点,且圆心在直线上.
(1)求圆的方程;
(2)设点在圆上,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.
(1)若点P的轨迹为曲线C,求此曲线的方程;
(2)若点Q在直线l1xy+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,试求x2+y2的最小值.

查看答案和解析>>

同步练习册答案