精英家教网 > 高中数学 > 题目详情

【题目】张三同学从7岁起到13岁每年生日时对自己的身高测量后记录如下表:

年龄(岁)

7

8

9

10

11

12

13

身高(cm)

121

128

135

141

148

154

160

)求身高关于年龄的线性回归方程;

)利用()中的线性回归方程,分析张三同学7岁至13岁身高的变化情况,如17岁之前都符合这一变化,请预测张三同学15岁时的身高.

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

【答案】;(173.5cm.

【解析】

试题分析:首先根据表格与公式求得相关数据,然后代入线性回归方程求得,由此求得线性回归方程;(代入()中的回归方程即可求得张三同学15岁时的身高.

试题解析:)由题意得

所以

所求回归方程为

)由()知,

故张三同学7岁至13岁的身高每年都在增高,平均每年增高6.5cm.

代入()中的回归方程,得

故预测张三同学15岁的身高为173.5cm.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x[0,1]时,f(x)=x,则函数y=f(x)-log3|x|的零点个数是( )

A.多于4个 B.4个

C.3个 D.2个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(1)当时,解不等式

(2)若的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

I)求证:当时,不等式成立;

II)关于的不等式上恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,在点处的切线方程为,求(1)实数的值;(2)函数的单调区间以及在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的两个焦点分别为,且椭圆经过点.

(1)求椭圆的离心率

(2)过点的直线与椭圆相交于两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn,n∈N*.已知a1=1,a2,a3,且当n≥2时,4Sn+2+5Sn=8Sn+1+Sn-1.

(1)求a4的值;

(2)证明:为等比数列;

(3)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l的右上方.

(1)求圆C的方程;

(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在坐标原点,焦点在轴上的椭圆,离心率为且过点,过定点的动直线与该椭圆相交于两点.

(1)若线段中点的横坐标是,求直线的方程;

(2)在轴上是否存在点,使为常数?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案