精英家教网 > 高中数学 > 题目详情
1.给出的下列函数中在$(\frac{π}{2},π)$上是增函数的是(  )
A.y=sinxB.y=cosxC.y=sin2xD.y=cos2x

分析 根据三角函数的单调性的性质进行判断即可.

解答 解:y=sinx在$(\frac{π}{2},π)$上是减函数,不满足条件.
y=cosx在$(\frac{π}{2},π)$上是减函数,不满足条件.
y=sin2x的周期是π,在$(\frac{π}{2},π)$上不单调,不满足条件.
y=cos2x的周期是π,$(\frac{π}{2},π)$上是增函数,满足条件.
故选:D

点评 本题主要考查三角函数单调性的判断,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow{a}$=(1-sinθ,1),$\overrightarrow{b}$=($\frac{1}{2}$,1+sinθ)(θ为锐角),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则tanθ=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.计算$\int_{\frac{π}{2}}^π{sinx}$dx=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆C:x2+y2-2x+my=0,其圆心C在直线y=x上.
(Ⅰ)求m的值;
(Ⅱ)若过点(-1,1)的直线l与圆C相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{m}$=(sin2x,-$\frac{\sqrt{3}}{2}$),$\overrightarrow{n}$=($\frac{1}{2}$,cos2x),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(Ⅰ)试用五点作图法画出函数f(x)在一个周期内的图象(要求列表);
(Ⅱ)求方程f(x)=m(0<m<1)在[-$\frac{π}{12}$,$\frac{35π}{12}$]内的所有实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.定义两种运算:a⊕b=$\sqrt{{a^2}-{b^2}}$,a?b=$\sqrt{{{(a-b)}^2}}$,则函数f(x)=$\frac{2⊕x}{(x?2)-2}$的图象关于原点 对称.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知:(2x-1)n=a0+a1x+a2x2+…+anxn(n∈N*,n为常数).
(1)求|a0|+|a1|+|a2|+…+|an|;
(2)我们知道二项式(1+x)n的展开式(1+x)n=Cn0+Cn1x+Cn2x2+…+Cnnxn.若该等式两边对x求导得:n(1+x)n-1=Cn1+2Cn2x+3Cn3x2…+nCnnxn-1,令x=1,可得Cn1+2Cn2+3Cn3…+nCnn=n•2n-1.利用此方法解答以下问题:
①求1a1+2a2+3a3+…+nan
②求12a1+22a2+32a3+…+n2an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.数列{an}满足a1=1,且对任意的m,n∈N*,都有am+n=am+an+mn,则$\frac{1}{a_1}$+$\frac{1}{a_2}$+$\frac{1}{a_3}$+…+$\frac{1}{{{a_{2015}}}}$=(  )
A.$\frac{4028}{2015}$B.$\frac{4030}{2016}$C.$\frac{2013}{2014}$D.$\frac{2012}{2013}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow a$与$\overrightarrow b$的夹角为30°,且$|\overrightarrow a|=\sqrt{3},|\overrightarrow b|=1$,设$\overrightarrow m=\overrightarrow a+\overrightarrow b,\overrightarrow n=\overrightarrow a-\overrightarrow b$,则向量$\overrightarrow m$在$\overrightarrow n$方向上的投影为2.

查看答案和解析>>

同步练习册答案