【题目】在直角坐标系xOy中,设倾斜角为α的直线: (t为参数)与曲线C: (θ为参数)相交于不同的两点A,B.
(1)若α= ,求线段AB的长度;
(2)若直线的斜率为 ,且有已知点P(2, ),求证:|PA||PB|=|OP|2 .
【答案】
(1)
解:由曲线C: (θ为参数),可得C的普通方程是 =1.
当 时,直线方程为: (t为参数),
代入曲线C的普通方程,得13t2+56t+48=0,
则线段AB的长度为
(2)
证明:将直线l的参数方程代入曲线C的普通方程,
化为:(cos2α+4sin2α)t2+(8 sinα+4cosα)t+12=0,
∵ ,
而直线的斜率为 ,则 代入上式求得|PA||PB|=7.
又 ,
∴|PA||PB|=|OP|2
【解析】(1)由曲线C: (θ为参数),利用平方关系可得C的普通方程.当 时,直线方程为: (t为参数),代入代入曲线C的普通方程,得13t2+56t+48=0,利用一元二次方程的根与系数的关系、弦长公式即可得出.(2)将直线l的参数方程代入曲线C的普通方程,化为:(cos2α+4sin2α)t2+(8 sinα+4cosα)t+12=0,利用根与系数的关系即可得出.
科目:高中数学 来源: 题型:
【题目】设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).
(1)若f(0)≤1,求a的取值范围;
(2)求f(x)在R上的单调区间(无需使用定义严格证明,但必须有一定的推理过程);
(3)当a>2时,求函数g(x)=f(x)+|x|在R上的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|x2﹣2x﹣8≤0},B={x| <0},U=R.
(1)求A∪B;
(2)求(UA)∩B;
(3)如果C={x|x﹣a>0},且A∩C≠,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,若对于在定义域内存在实数满足,则称函数为“局部奇函数”.若函数是定义在上的“局部奇函数”,则实数的取值范围是( )
A. [1﹣,1+) B. [﹣1,2] C. [﹣2,2] D. [﹣2,1﹣]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x|(x﹣a),a为实数.
(1)若函数f(x)为奇函数,求实数a的值;
(2)若函数f(x)在[0,2]为增函数,求实数a的取值范围;
(3)是否存在实数a(a<0),使得f(x)在闭区间 上的最大值为2,若存在,求出a的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log3x.
(1)求f(45)﹣f(5)的值;
(2)若函数y=g(x)(x∈R)是奇函数,当x>0时,g(x)=f(x),求函数 y=g(x)的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记等差数列的前项和为.
(1)求证:数列是等差数列;
(2)若 ,对任意,均有是公差为的等差数列,求使为整数的正整数的取值集合;
(3)记,求证: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com