精英家教网 > 高中数学 > 题目详情
(一)已知a,b,c∈R+
①求证:a2+b2+c2≥ab+bc+ac;
②若a+b+c=1,利用①的结论求ab+bc+ac的最大值.
(二)已知a,b,x,y∈R+
①求证:
x2
a
+
y2
b
(x+y)2
a+b

②利用①的结论求
1
2x
+
9
1-2x
(0<x<
1
2
)
的最小值.
证明:(一)①a2+b2≥2ab,c2+b2≥2bc,a2+c2≥2ac,…(3分)
三式相加可得a2+b2+c2≥ab+bc+ac
当且仅当a=b=c时等号成立                  …(6分)
②1=(a+b+c)2=a2+b2+c2+2(ab+bc+ac)≥3(ab+bc+ac)…(9分)
ab+bc+ac≤
1
3
,当且仅当a=b=c时等号成立.    …(12分)
(二)①要证
x2
a
+
y2
b
(x+y)2
a+b
,只要证(
x2
a
+
y2
b
)(a+b)≥(x+y)2
,…(3分)
(
x2
a
+
y2
b
)(a+b)=x2+y2+
bx2
a
+
ay2
b
x2+y2+2xy=(x+y)2

当且仅当bx=ay时等号成立.故原不等式得证.     …(6分)
②由①的结论知:
1
2x
+
9
1-2x
(1+3)2
2x+1-2x
=16

当且仅当x=
1
8
时,等号成立.                …(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(一)已知a,b,c∈R+
①求证:a2+b2+c2≥ab+bc+ac;
②若a+b+c=1,利用①的结论求ab+bc+ac的最大值.
(二)已知a,b,x,y∈R+
①求证:
x2
a
+
y2
b
(x+y)2
a+b

②利用①的结论求
1
2x
+
9
1-2x
(0<x<
1
2
)
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(一)已知a,b,c∈R+
①求证:a2+b2+c2≥ab+bc+ac;
②若a+b+c=1,利用①的结论求ab+bc+ac的最大值.
(二)已知a,b,x,y∈R+
①求证:数学公式
②利用①的结论求数学公式的最小值.

查看答案和解析>>

科目:高中数学 来源:2007-2008学年福建省莆田四中高二(上)模块数学试卷(理科)(解析版) 题型:解答题

(一)已知a,b,c∈R+
①求证:a2+b2+c2≥ab+bc+ac;
②若a+b+c=1,利用①的结论求ab+bc+ac的最大值.
(二)已知a,b,x,y∈R+
①求证:
②利用①的结论求的最小值.

查看答案和解析>>

科目:高中数学 来源:2007-2008学年福建省莆田四中高二(上)模块数学试卷(文科)(解析版) 题型:解答题

(一)已知a,b,c∈R+
①求证:a2+b2+c2≥ab+bc+ac;
②若a+b+c=1,利用①的结论求ab+bc+ac的最大值.
(二)已知a,b,x,y∈R+
①求证:
②利用①的结论求的最小值.

查看答案和解析>>

同步练习册答案