精英家教网 > 高中数学 > 题目详情
(2012•自贡一模)要研究可导函数f(x)=(1+x)n(n∈N*)在某点x0处的瞬时变化率,有两种方案可供选择:①直接求导,得到f′(x),再把横坐标x0代入导函数f′(x)的表达式;②先把f(x)=(1+x)n按二项式展开,逐个求导,再把横坐标x0代入导函数f′(x)的表达式.综合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=
n•2n-1
n•2n-1
 n∈N*
分析:先设t=Cn1+2Cn2+3Cn3+…+(r+1)Cnr+…+(n)Cnn再由Cnm=Cnn-m这个性质,将t转化为t=(n+1)Cn0+nCn1+(n-1)Cn2+…+(r+1)Cnr+…+Cnn②,两式相加求解.
解答:解:可导函数f(x)=(1+x)n(n∈N*)在某点x=1处的瞬时变化率,有两种方案可供选择:
①直接求导,得到f′(x),再把横坐标1代入导函数f′(x)的表达式;即:
f′(1)=n(1+1)n-1
②先把f(x)=(1+x)n按二项式展开,逐个求导,再把横坐标1代入导函数f′(x)的表达式.
即:f′(1)=Cn1+2Cn2+3Cn3+…nCnn
综合①②,可得到恒等式Cn1+2Cn2+3Cn3+…nCnn=n•2n-1
故答案为:n•2n-1
点评:本题主要考查二项式系数及利用组合数的关系应用倒序相加法求代数式的值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•自贡一模)已知
a
+
b
+
c
=
0
,且
a
c
的夹角为60°,|
b
|=
3
|
a
|,则cos<
a
b
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•自贡一模)已知函数f(x)=
2x     ,x≥0
x(x+1),x<0
,则f(-2)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•自贡一模)f(x)是以4为周期的奇函数,f(
1
2
)=1
sinα=
1
4
,则f(4cos2α)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•自贡一模)已知函数f(x)的定义域为[0,1],且同时满足:①对于任意x∈[0,1],总有f(x)≥3;②f(1)=4;③若x1≥0,x2≥0,x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)-3.
(I)求f(0)的值;
(II)求函数f(x)的最大值;
(III)设数列{an}的前n项和为Sn,满足a1=1,Sn=-
1
2
(an-3),n∈N*
,求证:f(a1)+f(a2)+…+f(an)<
3
2
log3
27
a
2
n

查看答案和解析>>

同步练习册答案