【题目】已知△OAB的顶点坐标为O(0,0),A(2,9),B(6,﹣3),点P的横坐标为14,且 =λ ,点Q是边AB上一点,且 =0.
(1)求实数λ的值与点P的坐标;
(2)求点Q的坐标.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,点,曲线 ,以极点为坐标原点,极轴为轴正半轴建立直角坐标系.
(1)在直角坐标系中,求点的直角坐标及曲线的参数方程;
(2)设点为曲线上的动点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC—A1B1C1中,AB=BC=BB1, ,D为AC上的点,B1C∥平面A1BD;
(1)求证:BD⊥平面;
(2)若且,求三棱锥A-BCB1的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆过点,且离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆交于、两点,以为对角线作正方形,记直线与轴的交点为,问、两点间距离是否为定值?如果是,求出定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程为(为参数).
(1)判断直线与曲线的位置关系,并说明理由;
(2)若直线和曲线相交于两点,且,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=a﹣bcos(2x+ )(b>0)的最大值为3,最小值为﹣1.
(1)求a,b的值;
(2)当求x∈[ , π]时,函数g(x)=4asin(bx﹣ )的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】要想得到函数y=sin(x﹣ )的图象,只须将y=cosx的图象( )
A.向右平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向左平移 个单位
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知M是正四面体ABCD棱AB的中点,N是棱CD上异于端点C,D的任一点,则下列结论中,正确的个数有( )
(1)MN⊥AB;
(2)若N为中点,则MN与AD所成角为60°;
(3)平面CDM⊥平面ABN;
(4)不存在点N,使得过MN的平面与AC垂直.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的焦点是椭圆: ()的顶点,且椭圆与双曲线的离心率互为倒数.
(Ⅰ)求椭圆的方程;
(Ⅱ)设动点, 在椭圆上,且,记直线在轴上的截距为,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com