精英家教网 > 高中数学 > 题目详情
3.一个几何体的三视图如图所示,则这个几何体的表面积等于10+2$\sqrt{3}$+4$\sqrt{2}$.

分析 该几何体是四棱锥,底面是直角梯形,一条侧棱垂直底面,根据公式可求表面积.

解答 解:由三视图复原几何体,如图所示:
它的底面是直角梯形,一条侧棱垂直底面高为2,
故底面梯形ABCD的面积为:6,
后侧面△PAD的面积为:2,
左侧面△PAB的面积为:2,
前侧面△PBC的面积为:$\frac{1}{2}×PB×BC$=4$\sqrt{2}$,
右侧面△PCD中PD=CD=2$\sqrt{2}$,PC=$2\sqrt{6}$,
故PC上的高长为:$\sqrt{2}$,
则右侧面△PCD的面积为:$\frac{1}{2}×2\sqrt{6}×\sqrt{2}$=2$\sqrt{3}$,
故几何体的表面积S=10+2$\sqrt{3}$+4$\sqrt{2}$,
故答案为:10+2$\sqrt{3}$+4$\sqrt{2}$

点评 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.盒中装有8个零件,其中有2个次品,现从中随机抽取2个,则恰有1个次品的概率为(  )
A.$\frac{1}{7}$B.$\frac{1}{6}$C.$\frac{3}{7}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设F1、F2分别是椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左、右焦点,P为椭圆上任一点,点M的坐标为(6,4),则PM+PF1的最大值为15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{1}{3}$,左焦点F到右准线l的距离为10,圆G:(x-1)2+y2=1.
(1)求椭圆的方程;
(2)若P是椭圆上任意一点,过点P作圆G的切线,切点为Q,过点P作右准线l的垂线,垂足为H,求$\frac{PQ}{PH}$的取值范围;
(3)是否存在以椭圆上的点M为圆心的圆M,使得过圆M上任意一点N作圆G的切线(切点为T)都满足$\frac{NF}{NT}=\sqrt{2}$?若存在,请求出圆M的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.给定映射f:(x,y)→(2x+y,x-2y),在映射f下,(3,-1)的原像为(  )
A.(-1,3)B.(5,5)C.(3,-1)D.(1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是(  )
A.$y=\frac{1}{x}$B.y=-2|x|C.$y={log_3}{x^2}$D.y=x-x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,角A,B,C所对边的长分别为a,b,c,已知b=$\sqrt{2}$c,sinA+$\sqrt{2}$sinC=2sinB,则cosA=$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列{an}满足a1=1,an•an+1=2n,则$\frac{{{a_{2016}}}}{{{a_{2015}}}}$=(  )
A.2B.$\frac{2015}{2016}$C.$\frac{2016}{2015}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=sin2x,为了得到g(x)=cos2x的图象,只要将y=f(x)的图象(  )
A.向左平移$\frac{π}{2}$个单位长度B.向右平移$\frac{π}{2}$个单位长度
C.向左平移$\frac{π}{4}$个单位长度D.向右平移$\frac{π}{4}$个单位长度

查看答案和解析>>

同步练习册答案