精英家教网 > 高中数学 > 题目详情

【题目】不等式x2﹣4x>2ax+a对一切实数x都成立,则实数a的取值范围是(
A.(1,4)
B.(﹣4,﹣1)
C.(﹣∞,﹣4)∪(﹣1,+∞)
D.(﹣∞,1)∪(4,+∞)

【答案】B
【解析】解:不等式x2﹣4x>2ax+a变形为 x2﹣(4+2a)x﹣a>0,
该不等式对一切实数x恒成立,
∴△<0,
即(4+2a)2﹣4(﹣a)<0;
化简得a2+5a+4<0,
解得﹣4<a<﹣1;
∴实数a的取值范围是(﹣4,﹣1).
所以答案是:B.
【考点精析】利用解一元二次不等式对题目进行判断即可得到答案,需要熟知求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣4这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于(
A.16
B.10
C.26
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列等式: (sin 2+(sin 2= ×1×2;
(sin 2+(sin 2+(sin 2+sin( 2= ×2×3;
(sin 2+(sin 2+(sin 2+…+sin( 2= ×3×4;
(sin 2+(sin 2+(sin 2+…+sin( 2= ×4×5;

照此规律,
(sin 2+(sin 2+(sin 2+…+(sin 2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆E: =1(a>b>0)的离心率为 ,两个顶点分别为A(﹣a,0),B(a,0),点M(﹣1,0),且3 = ,过点M斜率为k(k≠0)的直线交椭圆E于C,D两点,其中点C在x轴上方.
(1)求椭圆E的方程;
(2)若BC⊥CD,求k的值;
(3)记直线AD,BC的斜率分别为k1 , k2 , 求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中, (Ⅰ)求证: 是等比数列,并求{an}的通项公式an
(Ⅱ)数列{bn}满足 ,数列{bn}的前n项和为Tn , 若不等式 对一切n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和为Sn , 且a3+a5=a4+7,S10=100.
(1)求{an}的通项公式;
(2)求满足不等式Sn<3an﹣2的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列{an}中,a1=2,a3 , a2+a4 , a5成等差数列.
(1)求数列{an}的通项公式
(2)若数列{bn}满足b1+ +…+ =an(n∈N*),{bn}的前n项和为Sn , 求使Sn﹣nan+6≥0成立的正整数n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且Sn= nan+1 , 其中a1=1
(1)求数列{an}的通项公式;
(2)若bn= + ,数列{bn}的前n项和为Tn , 求证:Tn<2n+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=3sin(2x﹣ )的图象为C,则下列结论中正确的序号是 . ①图象C关于直线x= 对称;
②图象C关于点( ,0)对称;
③函数f(x)在区间(﹣ )内不是单调的函数;
④由y=3sin2x的图象向右平移 个单位长度可以得到图象C.

查看答案和解析>>

同步练习册答案