精英家教网 > 高中数学 > 题目详情
过双曲线x2-y2=8的右焦点F2的一条弦PQ,|PQ|=7,F1是左焦点,那么△F1PQ的周长为(  )
分析:根据双曲线方程得a=b=2
2
,c=4.由双曲线的定义,证出|PF1|+|QF1|=|PF2|+|QF2|+8
2
=|PQ|+8
2
,结合
|PQ|=7即可算出△F1PQ的周长.
解答:解:∵双曲线方程为x2-y2=8,
∴a=b=2
2
,c=4
根据双曲线的定义,得
|PF1|-|PF2|=4
2
,|QF1|-|QF2|=4
2

∴|PF1|=|PF2|+4
2
,|QF1|=(|QF2|+4
2
),
相加可得|PF1|+|QF1|=|PF2|+|QF2|+8
2

∵|PF2|+|QF2|=|PQ|=7,∴|PF1|+|QF1|=7+8
2

因此△F1PQ的周长=|PF1|+|QF1|+|PQ|=7+8
2
+7=14+8
2

故选:C
点评:本题给出经过双曲线右焦点的弦PQ长,求PQ与左焦点构成三角形的周长,着重考查了双曲线的标准方程、定义与简单几何性质等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过双曲线x2-y2=8的右焦点F2有一条弦PQ,PQ=7,F1是左焦点,那么△F1PQ的周长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线x2-y2=4的右焦点F作倾斜角为1050的直线,交双曲线于P、Q两点,则|FP|•|FQ|的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•潍坊三模)已知圆心在x轴正半轴上的圆C过双曲线x2-y2=l的右顶点,且被双曲线的一条渐近线截得的弦长为2
7
,则圆C的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设过双曲线x2-y2=9左焦点F1的直线交双曲线的左支于点P,Q,F2为双曲线的右焦点.若PQ=7,则△F2PQ的周长为(  )

查看答案和解析>>

同步练习册答案