精英家教网 > 高中数学 > 题目详情
棱长为4的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是
 
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:根据几何体的三视图,得出该几何体的结构特征是什么.从而求出它的体积.
解答: 解:由三视图知余下的几何体如图示;
∵B、D都是侧棱的中点,
∴上、下两部分的几何体相同,
即上、下两部分的体积相等,
∴该几何体的体积为V=
1
2
×43=32.
故答案为:32.
点评:本题考查了几何体的三视图的应用问题,是基础题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若对任意实数x,都有f(x)=loga(2+ex-1)≤-1,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

x,y满足约束条件
x+y-2≤0
2y-x+2≥0
2x-y+2≥0
,若z=y-2ax取得最大值的最优解不唯一,则实数a的值为(  )
A、1或-
1
2
B、
1
2
或-1
C、2或1
D、2或-1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图正方形BCDE的边长为a,已知AB=
3
BC,将△ABE沿BE边折起,折起后A点在平面BCDE上的射影为D点,则翻折后的几何体中有如下描述:
①AB与DE所成角的正切值是
2

②AB∥CE;
③VB-ACE的体积是
1
6
a2
④平面ABC⊥平面ADC;
⑤直线EA与平面ADB所成角为30°.
其中正确的有
 
.(填写你认为正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆心C在x轴上的圆过点A(2,2)和B(4,0).
(1)求圆C的方程;
(2)求过点M(4,6)且与圆C相切的直线方程;
(3)已知线段PQ的端点Q的坐标为(3,5),端点P在圆C上运动,求线段PQ的中点N的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司研发甲、乙两种新产品,根据市场调查预测,甲产品的利润y(单位:万元)与投资x(单位:万元)满足:f(x)=alnx-bx+3(a,b∈R,a,b为常数),且曲线y=f(x)与直线y=kx在(1,3)点相切;乙产品的利润与投资的算术平方根成正比,且其图象经过点(4,4).
(I)分别求甲、乙两种产品的利润与投资资金间的函数关系式;
(Ⅱ)已知该公司已筹集到40万元资金,并将全部投入甲、乙两种产品的研发,每种产品投资均不少于10万元.问怎样分配这40万元投资,才能使该公司获得最大利润?其最大利润约为多少万元?
(参考数据:ln=10=2.303,ln15=2.708,ln20=2.996,ln25=3.219,ln30=3.401)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一简单几何体ABCDE的一个面ABC内接于圆O,G、H分别是AE、BC的中点,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.
(Ⅰ)证明:GH∥平面ACD;
(Ⅱ)若AC=BC=BE=2,求二面角O-CE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某专营店经销某商品,当售价不高于10元时,每天能销售100件,当价格高于10元时,每提高1元,销量减少3件,若该专营店每日费用支出为500元,用x表示该商品定价,y表示该专营店一天的净收入(除去每日的费用支出后的收入).
(1)把y表示成x的函数;
(2)试确定该商品定价为多少元时,一天的净收入最高?并求出净收入的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)为偶函数,x>0时,f(x)单调递增,P=f(-π),Q=f(e),R=f(
2
),则P,Q,R的大小为(  )
A、R>Q>P
B、Q>R>P
C、P>R>Q
D、P>Q>R

查看答案和解析>>

同步练习册答案