精英家教网 > 高中数学 > 题目详情

【题目】曲线的参数方程为为参数),以原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.

(1)求曲线的极坐标方程和曲线的直角坐标方程;

(2)若直线与曲线的交点分别为异于原点),当斜率时,求的最小值.

【答案】(1)的极坐标方程为;曲线的直角坐标方程.(2)

【解析】

(1)消去参数,可得曲线的直角坐标方程,再利用极坐标与直角坐标的互化,即可求解.

(2)解法1:设直线的倾斜角为,把直线的参数方程代入曲线的普通坐标方程,求得,再把直线的参数方程代入曲线的普通坐标方程,得,得出,利用基本不等式,即可求解;

解法2:设直线的极坐标方程为,分别代入曲线的极坐标方程,得 ,得出,即可基本不等式,即可求解.

(1) 由题曲线的参数方程为为参数),消去参数,

可得曲线的直角坐标方程为,即

则曲线的极坐标方程为,即

又因为曲线的极坐标方程为,即

根据,代入即可求解曲线的直角坐标方程.

(2)解法1:设直线的倾斜角为

则直线的参数方程为为参数,),

把直线的参数方程代入曲线的普通坐标方程得:

解得

把直线的参数方程代入曲线的普通坐标方程得:

解得

,即

当且仅当,即时取等号,

的最小值为.

解法2:设直线的极坐标方程为),

代入曲线的极坐标方程,得

把直线的参数方程代入曲线的极坐标方程得:

,即

曲线的参,即

当且仅当,即时取等号,

的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆,点是圆上任意一点,线段的垂直平分线交于点,当点在圆上运动时,点的轨迹为曲线

(1)求曲线的方程;

(2)若直线与曲线相交于两点,为坐标原点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】健身馆某项目收费标准为每次60元,现推出会员优惠活动:具体收费标准如下:

现随机抽取了100为会员统计它们的消费次数,得到数据如下:

假设该项目的成本为每次30元,根据给出的数据回答下列问题:

1)估计1位会员至少消费两次的概率

2)某会员消费4次,求这4次消费获得的平均利润;

3)假设每个会员每星期最多消费4次,以事件发生的频率作为相应事件的概率,从会员中随机抽取两位,记从这两位会员的消费获得的平均利润之差的绝对值为,求的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数有下述四个结论:

fx)是周期函数;②fx)的图象关于直线x2kπkZ)对称,

fx)在(﹣π0)上没有零点;④fx)的值域为

其中正确结论的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点P40)的动直线与抛物线C交于点AB,且(点O为坐标原点).

1)求抛物线C的方程;

2)当直线AB变动时,x轴上是否存在点Q使得点P到直线AQBQ的距离相等,若存在,求出点Q坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆台的轴截面为等腰梯形圆台的侧面积为.若点分别为圆上的动点,且点在平面的同侧.

1)求证:

2)若,则当三棱锥的体积取最大值时,求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆台的轴截面为等腰梯形圆台的侧面积为.若点分别为圆上的动点,且点在平面的同侧.

1)求证:

2)若,则当三棱锥的体积取最大值时,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】马林梅森是17世纪法国著名的数学家和修道士,也是当时欧洲科学界一位独特的中心人物,梅森在欧几里得、费马等人研究的基础上对2p1作了大量的计算、验证工作,人们为了纪念梅森在数论方面的这一贡献,将形如2P1(其中p是素数)的素数,称为梅森素数.若执行如图所示的程序框图,则输出的梅森素数的个数是(

A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线Cy2=2px(p>0)的焦点为F,准线为lAB为过焦点F且垂直于x轴的抛物线C的弦,已知以AB为直径的圆经过点(-10).

1)求p的值及该圆的方程;

2)设Ml上任意一点,过点MC的切线,切点为N,证明:MFNF.

查看答案和解析>>

同步练习册答案