精英家教网 > 高中数学 > 题目详情

【题目】为对南康区和于都县两区县某次联考成绩进行分析,随机抽查了两地一共10000名考生的成绩,根据所得数据画了如下的样本频率分布直方图.

(1)求成绩在的频率;

(2)根据频率分布直方图算出样本数据平均数;

(3)为了分析成绩与班级、学校等方面的关系,必须按成绩再从这10000人中用分层抽样方法抽出20人作进一步分析,则成绩在的这段应抽多少人?

【答案】(1);(2);(3)人.

【解析】试题分析:(1)根据频率分布直方图,求出成绩在[600,650)的频率即可;

(2)利用频率分布直方图,求出样本数据的平均数即可;

(3)求出成绩在[550,600)的频率与频数,计算出用分层抽样方法在这段应抽取的人数.

试题解析:

(1)根据频率分布直方图,得:成绩在[600,650)的频率为

0.003×(650﹣600)=0.15;

(2)

,

(3)成绩在[550,600)的频率为:0.005×(600﹣550)=0.25,

所以10000名考生中成绩在[550,600)的人数为:0.25×10000=2500(人),

再从10000人用分层抽样方法抽出20人,

则成绩在[550,600)的这段应抽取20×=5人.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了展示中华汉字的无穷魅力,传递传统文化,提高学习热情,某校开展《中国汉字听写大会》的活动.为响应学校号召,2(9)班组建了兴趣班,根据甲、乙两人近期8次成绩画出茎叶图,如图所示(把频率当作概率).

(1)求甲、乙两人成绩的平均数和中位数;

(2)现要从甲、乙两人中选派一人参加比赛,从统计学的角度,你认为派哪位学生参加比较合适?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱 中, , , 是棱上的动点.

证明:

若平面分该棱柱为体积相等的两个部分,试确定点的位置,并求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图 1,在直角梯形中, ,且.现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直, 的中点,如图 2.

(1)求证: 平面

(2)求证: 平面

(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆 的左、右焦点分别为 为椭圆上任一点,且的最大值的取值范围是,其中,则椭圆的离心率的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥A-BCDE中,底面BCDE为直角梯形,CD⊥平面ABC,侧面ABC是等腰直角三角形,∠EBC=ABC=90°BC=CD=2BE=2,点M是棱AD的中点

(I)证明:平面AED⊥平面ACD;

()求锐二面角B-CM-A的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李,小王设计的底座形状分别为 ,经测量米, 米, 米,

(I)求的长度;

(Ⅱ)若环境标志的底座每平方米造价为元,不考虑其他因素,小李,小王谁的设计建造费用最低(请说明理由),最低造价为多少?(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车进驻城市,绿色出行引领时尚.某市有统计数据显示,2017年该市共享单车用户年龄登记分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示.若将共享单车用户按照年龄分为“年轻人”(20岁至39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”,使用次数为5次或不足5次的称为“不常使用单车用户”.已知在“经常使用单车用户”中有是“年轻人”.

(1)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,补全下列列联表,并根据列联表的独立性检验,判断能有多大把握可以认为经常使用共享单车与年龄有关?

(2)将频率视为概率,若从该市市民中随机任取3人,设其中经常使用共享单车的“非年轻人”人数为随机变量,求的分布与期望.

(参考数据:独立性检验界值表,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为,准线为,三个点 中恰有两个点在上.

(1)求抛物线的标准方程;

(2)过的直线交 两点,点上任意一点,证明:直线 的斜率成等差数列.

查看答案和解析>>

同步练习册答案