精英家教网 > 高中数学 > 题目详情
5.给出下列四个命题,其中正确的是(  )
①空间四点共面,则其中必有三点共线;
②空间四点不共面,则其中任何三点不共线;
③空间四点中存在三点共线,则此四点共面;
④空间四点中任何三点不共线,则此四点不共面.
A.②③B.①②③C.①②D.②③④

分析 由正方形的四个顶点共面,知①④错误;由②③正确.

解答 解:在①中,由正方形的四个顶点共面,知①错误;
在②中,由公理三及推论知空间四点不共面,则其中任何三点不共线,故②正确;
在③中,由公理三及推论知空间四点中存在三点共线,则此四点共面,故③正确;
在④中,由由正方形的四个顶点共面,知④错误.
故选:A.

点评 本题考查命题真假的判断,是基础题,解题时要认真审题,注意平面的基本性质及推论的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.过点A(-3,0)作直线l与圆x2+y2-6y-16=0交于M,N两点,若|MN|=8,则l的方程为x=-3或y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.化简 $\overrightarrow{AC}-\overrightarrow{BD}+\overrightarrow{CD}-\overrightarrow{AB}$=(  )
A.$\overrightarrow{AB}$B.$\overrightarrow{BC}$C.$\overrightarrow{DA}$D.$\overrightarrow 0$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以坐标原点O为极点,以x轴正半轴为极轴)中,圆C的圆心在射线$θ=\frac{π}{4}$上,且与直线$ρ=-\frac{1}{sinθ}$相切于点$(\sqrt{2},\frac{7π}{4})$.
(1)求圆C的极坐标方程;
(2)若$α∈[0,\frac{π}{4})$,直线l的参数方程为$\left\{\begin{array}{l}x=2+tcosα\\ y=2+tsinα\end{array}\right.$(t为参数),直线l交圆C于A,B两点,求弦长|AB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数$f(x)=sinωx+\sqrt{3}cosωx$ (ω>0)的图象与直线y=-2的两个相邻公共点之间的距离等于π,则f(x)的单调递减区间是(  )
A.$[kπ+\frac{π}{6},kπ+\frac{7π}{6}]k∈{Z}$B.$[kπ+\frac{π}{12},kπ+\frac{7π}{12}]k∈{Z}$
C.$[kπ+\frac{π}{12},kπ+\frac{7π}{6}]k∈{Z}$D.$[kπ-\frac{π}{12},kπ+\frac{7π}{12}]k∈{Z}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在正方形ABCD中,AC与BD交于点O,则图中与$\overrightarrow{OA}$相等的向量是(  )
A.$\overrightarrow{OC}$B.$\overrightarrow{OD}$C.$\overrightarrow{OB}$D.$\overrightarrow{CO}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.研究某校女学生身高和体重的关系,用相关指数R2来刻画回归效果时,如果可以叙述为“身高解释了64%的体重变化,而随机误差贡献了剩余的36%,所以身高对体重的效应比随机误差的效应大得多”,则相关指数R2≈0.64.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.
(1)若f′(3)=0,求常数a的值;  
(2)若f(x)在(-∞,0)上为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=$\left\{\begin{array}{l}{x^2},0≤x≤1\\ 1,1<x≤2\end{array}\right.$则定积分$\int_0^2{f(x)dx}$=$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案