精英家教网 > 高中数学 > 题目详情
6.设g(x)=ex,f(x)=g[λx+(1-λ)a]-λg(x),其中a,λ是常数,且0<λ<1.
(1)求函数f(x)的极值;
(2)证明:对任意正数a,存在正数x,使不等式|$\frac{{e}^{x}-1}{x}-1$|<a成立.

分析 (1)首先对函数求导,使得导函数等于0,解出x的值,分两种情况讨论:当f′(x)>0,当f′(x)<0,做出函数的极值点,求出极值.
(2)将原不等式化为 $\frac{{e}^{x}-x-1}{x}$<a,即ex-(1+a)x-1<0,令g(x)=ex-(1+a)x-1,利用导数研究此函数的极值,从而得出存在正数x=ln(a+1),使原不等式成立.

解答 解:(1)∵f′(x)=λg[λx+(1-λ)a]-λg′(x),-----------------(1分)
由f′(x)>0得,g[λx+(1-λ)a]>g′(x),
∴λx+(1-λ)a>x,即(1-λ)(x-a)<0,解得x<a,-----------------(3分)
故当x<a时,f′(x)>0;当x>a时,f′(x)<0;
∴当x=a时,f(x)取极大值f(a)=(1-λ)ea,但f(x)没有极小值.-----------------(4分)
(2)∵|$\frac{{e}^{x}-1}{x}$-1|=|$\frac{{e}^{x}-x-1}{x}$|,
又当x>0时,令h(x)=ex-x-1,则h′(x)=ex-1>0,
故h(x)>h(0)=0,
因此原不等式化为 $\frac{{e}^{x}-x-1}{x}$<a,即ex-(1+a)x-1<0,-----------------(6分)
令g(x)=ex-(1+a)x-1,则g′(x)=ex-(1+a),
由g′(x)=0得:ex=(1+a),解得x=ln(a+1),
当0<x<ln(a+1)时,g′(x)<0;当x>ln(a+1)时,g′(x)>0.
故当x=ln(a+1)时,g(x)取最小值g[ln(a+1)]=a-(1+a)ln(a+1),---------------(8分)
令s(a)=$\frac{a}{1+a}$-ln(1+a),则s′(a)=-$\frac{a}{{(1+a)}^{2}}$<0.
故s(a)<s(0)=0,即g[ln(a+1)]=a-(1+a)ln(a+1)<0.
因此,存在正数x=ln(a+1),使原不等式成立.-----------------(10分)

点评 本小题主要考查函数在某点取得极值的条件、导数在最大值、最小值问题中的应用及应用所学导数的知识、思想和方法解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.若函数f(x)=Asin(ωx+φ)(A>0,ω>0,0≤φ<π)满足下列条件:
(1)f(x)的图象向左平移π个单位时第一次和原图象重合;
(2)对任意的x∈R都有$f(x)≤f(\frac{π}{6})=2$成立.
则:(Ⅰ)求f(x)的解析式;
(Ⅱ)若锐角△ABC的内角B满足f(B)=1,且∠B的对边b=1,求△ABC的周长l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}中,a1=2,a2=3,其前n项和Sn满足an+1+Sn-1=Sn+1(n≥2,n∈N*).
(1)求证:数列{an}为等差数列,并求{an}的通项公式;
(2)设Tn为数列$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知点H(-1,0),动点P是y轴上除原点外的一点,动点M满足PH⊥PM,且PM与x轴交于点Q,Q是PM的中点.
(1)求动点M的轨迹E的方程;
(2)若点F是曲线E的焦点,过F的两条直线l1,l2关于x轴对称,且分别交曲线E于AC,BD,若四边形ABCD的面积等于$\frac{1}{2}$.求直线l1,l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若0≤θ<2π且同时满足cosθ<sinθ和tanθ<sinθ,则θ的取值范围是(  )
A.($\frac{π}{2}$,π)B.($\frac{π}{4}$,$\frac{3}{4}$π)C.(π,$\frac{3}{2}$π)D.($\frac{3}{4}$π,$\frac{5}{4}$π)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图所示为棱长为1的正方体的表面展开图,在原正方体中,给出下列四个结论:
①点M到AB的距离为$\frac{{\sqrt{2}}}{2}$;
②三棱锥C-DNE的体积为$\frac{1}{6}$;
③AB与EF所成的角是$\frac{π}{2}$;
④M到平面ABD的距离为1.
上述结论中正确的序号是①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在(x-$\frac{2}{x}$)8展开式中,常数项是1120.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,则输出的S的值为(  )
A.-2015B.2016C.2014D.-2017

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.函数f(x)=ln(x2-3x-4)的定义域为集合A,函数g(x)=3x-a(x≤2)的值域为集合B.
(1)求集合A,B;
(2)若集合A,B满足B∩∁RB=∅,求实数a的取值范围.

查看答案和解析>>

同步练习册答案