精英家教网 > 高中数学 > 题目详情
如图,直三棱柱ABC-A1B1C1中,AB=BC,∠ABC=120°,Q是AC上的点,AB1平面BC1Q.
(Ⅰ)确定点Q在AC上的位置;
(Ⅱ)若QC1与平面BB1C1C所成角的正弦值为
2
4
,求二面角Q-BC1-C的余弦值.
(Ⅰ)连接B1C交BC1于点P,连接PQ.
因为直线AB1平面BC1Q,AB1?平面AB1C,平面BC1Q∩平面AB1C=PQ,
所以AB1PQ.
因为P为B1C的中点,且AB1PQ,
所以,Q为AC的中点.
(II)如图建立空间直角坐标系,设AB=BC=a,BB1=b,则平面BC1C的法向量
m
=(1,0,0)

B(0,0,0),C1(0,a,b),Q(
3
4
a,
1
4
a,0)

BC1
=(0,a,b)
QC1
=(-
3
4
a,
3
4
a,b)

∵QC1与平面BC1C所成角的正弦值为
2
4

2
4
=|cos<
QC1
m
>|
=
|
QC1
m
|
|
QC1
||
m
|
=
3
4
a
3
16
a2+
9
16
a2+b2
,化为3a2=4b2,取b=
3
2
a

设平面C1BQ的法向量为
n
=(x,y,z)
,则
n
BC1
=0
n
QC1
=0
,即
ay+bz=0
-
3
4
ax+
3a
4
y+bz=0
,及b=
3
2
a

令x=1,解得y=-
3
,z=2,∴
n
=(1,-
3
,2)

cos<
m
n
=
m
n
|
m
||
n
|
=
1
8
=
2
4

故二面角Q-BC1-C的余弦值为
2
4

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

P是平面ABCD外的点,四边形ABCD是平行四边形,
AB
=(2,-1,-4),
AD
=(4,2,0),
AP
=(-1,2,-1).
(1)求证:PA⊥平面ABCD;
(2)对于向量
a
=(x1,y1z1),
b
=(x2y2z2),
c
=(x3y3z3)
,定义一种运算:(
a
×
b
)•
c
=x1y2z3+x2y3z1+x3y1z2-x1y3z2-x2z3-x3y2z1
,试计算(
AB
×
AD
)-
AP
的绝对值;说明其与几何体P-ABCD的体积关系,并由此猜想向量这种运算(
AB
×
AD
)-
AP
的绝对值的几何意义.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,AA1=AD=2,点E在棱CD上,且CE=
1
3
CD

(1)求证:AD1⊥平面A1B1D;
(2)在棱AA1上是否存在点P,使DP平面B1AE?若存在,求出线段AP的长;若不存在,请说明理由;
(3)若二面角A-B1E-A1的余弦值为
30
6
,求棱AB的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是梯形,ADBC,∠DAB=90°,PA⊥平面ABCD,PA=AB=BC=2,AD=1.
(Ⅰ)求证:BC⊥平面PAB;
(Ⅱ)求异面直线PC与AB所成角的余弦值;
(Ⅲ)在侧棱PA上是否存在一点E,使得平面CDE与平面ADC所成角的余弦值是
2
3
,若存在,求出AE的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=
1
2
CD=a,PD=
2
a.
(1)若M为PA中点,求证:AC平面MDE;
(2)求平面PAD与PBC所成锐二面角的大小(理);
求二面角P-AC-D的正切值的大小(文).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图直角梯形OABC中,∠COA=∠AOB=90°,OC=2,OA=AB=1,SO⊥平面OABC,SO=1,分别以OC,OA,OS为x轴、y轴、z轴建立直角坐标系O-xyz.
(Ⅰ)求
SC
OB
夹角的余弦值;
(Ⅱ)求OC与平面SBC夹角的正弦值;
(Ⅲ)求二面角S-BC-O.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AB=2,AC=AA1=2
3
,∠ABC=
π
3

(1)证明:AB⊥A1C;
(2)求二面角A-A1C-B的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在边长为2的正方体ABCD-A′B′C′D′中,E是BC的中点,F是DD′的中点
(1)求证:CF平面A′DE
(2)求二面角E-A′D-A的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平行四边形中,,,中点,若,则的长为
       

查看答案和解析>>

同步练习册答案