1£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬×óÓÒ¶¥µã·Ö±ðΪA1£¬A2£¬¹ýF1×÷бÂʲ»Îª0µÄÖ±ÏßlÓëÍÖÔ²½»ÓÚA£¬BÁ½µã£¬¡÷ABF2µÄÖܳ¤Îª8£®ÍÖÔ²ÉÏÒ»µãPÓëA1£¬A2Á¬ÏßµÄбÂÊÖ®»ý${k_{P{A_1}}}•{k_{P{A_2}}}=-\frac{1}{4}$£¨µãP²»ÊÇ×óÓÒ¶¥µãA1£¬A2£©£®
£¨¢ñ£©Çó¸ÃÍÖÔ²·½³Ì£»
£¨¢ò£©ÒÑÖª¶¨µãM£¨0£¬m£©£¨ÆäÖг£Êým£¾0£©£¬ÇóÍÖÔ²É϶¯µãNÓëMµã¾àÀëµÄ×î´óÖµ£®

·ÖÎö £¨¢ñ£©ÓÉ¡÷ABF2µÄÖܳ¤Îª8ÇóµÃa£¬È»ºó½áºÏ${k_{P{A_1}}}•{k_{P{A_2}}}=-\frac{1}{4}$ÇóµÃbµãµÄÖµ£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨¢ò£©Éè³öNµÄ×ø±ê£¬ÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽµÃµ½|MN|¹ØÓÚNµÄ×Ý×ø±êµÄº¯Êý£¬È»ºó·ÖÀàÇó³öÍÖÔ²É϶¯µãNÓëMµã¾àÀëµÄ×î´óÖµ£®

½â´ð ½â£º£¨¢ñ£©Èçͼ£¬ÓÉ¡÷ABF2µÄÖܳ¤Îª8£¬µÃ4a=8£¬¼´a=2£®
¡àA1£¨-2£¬0£©£¬A2£¨2£¬0£©£¬
ÉèP£¨x0£¬y0£©£¬Ôò$\frac{{{x}_{0}}^{2}}{4}+\frac{{{y}_{0}}^{2}}{{b}^{2}}=1$£®
ÓÖ${k_{P{A_1}}}•{k_{P{A_2}}}=-\frac{1}{4}$£¬µÃ$\frac{{y}_{0}}{{x}_{0}+2}•\frac{{y}_{0}}{{x}_{0}-2}=-\frac{1}{4}$£¬
¼´$\frac{{{x}_{0}}^{2}}{4}+{{y}_{0}}^{2}=1$£¬¡àb2=1£®
ÔòÍÖÔ²·½³ÌΪ£º$\frac{x^2}{4}+{y^2}=1$£»
£¨¢ò£©ÉèÍÖÔ²ÉÏN£¨x0£¬y0£©£¨-1¡Üy0¡Ü1£©£¬ÓÖM£¨0£¬m£©£¬
¡à|MN|=$\sqrt{{{x}_{0}}^{2}+£¨{y}_{0}-m£©^{2}}$=$\sqrt{-3{{y}_{0}}^{2}-2m{y}_{0}+{m}^{2}+4}$
=$\sqrt{-3£¨{y}_{0}+\frac{m}{3}£©^{2}+\frac{4{m}^{2}}{3}+4}$£®
Èô$\frac{m}{3}£¾1$£¬¼´m£¾3ʱ£¬Ôòµ±y0=-1ʱ£¬|MN|ÓÐ×î´óֵΪm+1£¬
Èô0$£¼\frac{m}{3}¡Ü1$£¬¼´0£¼m¡Ü3ʱ£¬Ôòµ±${y}_{0}=-\frac{m}{3}$ʱ£¬|MN|ÓÐ×î´óֵΪ$\sqrt{\frac{4{m}^{2}}{3}+4}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÍÖÔ²·½³ÌµÄÇ󷨣¬ÑµÁ·ÁËÀûÓÃÅä·½·¨Çóº¯ÊýµÄ×îÖµ£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Éèx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{3x-y-2¡Ü0}\\{x-y¡Ý0}\\{x¡Ý0£¬y¡Ý0}\end{array}\right.$£¬ÈôÄ¿±êº¯Êýz=ax+by£¨a£¾0£¬b£¾0£©µÄ×î´óֵΪ1£¬Ôò$\frac{1}{a}$+$\frac{4}{b}$µÄ×îСֵΪ9£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®º¯Êýf£¨x£©=ax3+bx+$\frac{c}{x}$+2£¬Âú×ãf£¨-3£©=-2015£¬Ôòf£¨3£©µÄֵΪ2019£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖª$|\vec a|=1£¬|\vec b|=2£¬\vec a•\vec b=1$£¬Ôò$|\vec a+\vec b|$µÈÓÚ£¨¡¡¡¡£©
A£®7B£®$\sqrt{7}$C£®3D£®$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÉèF1¡¢F2·Ö±ðÊÇÍÖÔ²$\frac{x^2}{4}+\frac{y^2}{3}=1$µÄ×ó£¬ÓÒ½¹µã£¬PΪÍÖÔ²ÉÏÈÎÒ»µã£¬µãMµÄ×ø±êΪ£¨3£¬3£©£¬Ôò|PM|-|PF2|µÄ×îСֵΪ£¨¡¡¡¡£©
A£®5B£®$\sqrt{13}$C£®1D£®$-\sqrt{13}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Ò»¸ö¹¤³§Éú²úijÖÖ²úƷÿÄêÐèÒª¹Ì¶¨Í¶×Ê100ÍòÔª£¬´ËÍâÿÉú²ú1¼þ¸Ã²úÆ·»¹ÐèÒªÔö¼ÓͶ×Ê1ÍòÔª£¬Äê²úÁ¿Îªx£¨x¡ÊN*£©¼þ£®µ±x¡Ü20ʱ£¬ÄêÏúÊÛ×ÜÊÕÈëΪ£¨33x-x2£©ÍòÔª£»µ±x£¾20ʱ£¬ÄêÏúÊÛ×ÜÊÕÈëΪ260ÍòÔª£®¼Ç¸Ã¹¤³§Éú²ú²¢ÏúÊÛÕâÖÖ²úÆ·ËùµÃµÄÄêÀûÈóΪyÍòÔª£¬
£¨1£©y£¨ÍòÔª£©Óëx£¨¼þ£©µÄº¯Êý¹ØϵʽΪ£¿
£¨2£©¸Ã¹¤³§µÄÄê²úÁ¿Îª¶àÉÙ¼þʱ£¬ËùµÃÄêÀûÈó×î´ó£¬²¢Çó³ö×î´óÖµ£®£¨ÄêÀûÈó=ÄêÏúÊÛ×ÜÊÕÈë-Äê×ÜͶ×Ê£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÏÂÁк¯ÊýÖУ¬ÖµÓòΪ£¨0£¬+¡Þ£©µÄÊÇ£¨¡¡¡¡£©
A£®$y=\sqrt{x}$B£®y=2|x|C£®y=x2+x+1D£®y=2-x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®p£ºÊµÊýaʹµÃx2-ax+1£¼0Óн⣬q£ºÊµÊýaÂú×㺯Êýy=axÔÚ¶¨ÒåÓòÄÚµÝÔö£®
£¨1£©pΪÕæʱ£¬aµÄÈ¡Öµ·¶Î§£®
£¨2£©p¡ÄqΪ¼Ù£¬ÇÒp¡ÅqΪÕæʱ£¬aµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®A={x||x|£¼1}£¬B={x|x£¾a}£¬ÇÒA¡ÉB=∅£¬ÔòaµÄÈ¡Öµ·¶Î§a¡Ý1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸