精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=x2-1+aln(1-x),a∈R.
(Ⅰ)若函数f(x)为定义域上的单调函数,求实数a的取值范围;
(Ⅱ)若函数f(x)存在两个极值点x1,x2,且x1<x2.证明:$\frac{f({x}_{1})}{{x}_{2}}$>$\frac{f({x}_{2})}{{x}_{1}}$.

分析 (Ⅰ)求导,由二次函数的性质,当a≥$\frac{1}{2}$,函数f′(x)<0恒成立,则f(x)在(-∞,1)上单调减函数,a<$\frac{1}{2}$,函数的两个极值点,根据函数的单调性即可求得实数a的取值范围;
(Ⅱ)由题意可知:-2x2+2x-a=0,在x<1有两个不等式的实根,利用韦达定理即可求得x1,x2,分别求得$\frac{f({x}_{1})}{{x}_{2}}$-$\frac{f({x}_{2})}{{x}_{1}}$,构造辅助函数,求导,根据函数的单调性求得$\frac{f({x}_{1})}{{x}_{2}}$-$\frac{f({x}_{2})}{{x}_{1}}$>0,即可求得$\frac{f({x}_{1})}{{x}_{2}}$>$\frac{f({x}_{2})}{{x}_{1}}$.

解答 解:(Ⅰ)函数f(x)的定义域为(-∞,1),求导:f′(x)=2x-$\frac{a}{1-x}$=$\frac{-2{x}^{2}+2x-a}{1-x}$,x<1,
令g(x)=-2x2+2x-a,则△=4-4(-2)(-a)=4-8a,
当4-8a≤0时,即a≥$\frac{1}{2}$,则-2x2+2x-a≤0恒成立,
则f(x)在(-∞,1)上单调减函数,
当4-8a>0时,即a<$\frac{1}{2}$,则-2x2+2x-a=0的两个根为x1=$\frac{1-\sqrt{1-2a}}{2}$,x2=$\frac{1+\sqrt{1-2a}}{2}$,
当x∈(-∞,x1)时,f′(x)<0,函数f(x)单调递减,
当x∈(x1,$\frac{1}{2}$),f′(x)>0,函数f(x)单调递增,不符合题意,
综上可知:函数f(x)为定义域上的单调函数,则实数a的取值范围($\frac{1}{2}$,+∞);
(Ⅱ)证明:由函数有两个极值点,则f′(x)=0,在x<1上有两个不等的实根,
即-2x2+2x-a=0,在x<1有两个不等式的实根,x1,x2
由0<a<$\frac{1}{2}$,则$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=1}\\{{x}_{1}{x}_{2}=\frac{a}{2}}\end{array}\right.$,且x1∈(0,$\frac{1}{2}$),x2∈($\frac{1}{2}$,1),
则$\frac{f({x}_{1})}{{x}_{2}}$=$\frac{{x}_{1}^{2}-1+aln(1-{x}_{1})}{{x}_{2}}$=$\frac{({x}_{1}-1)({x}_{2}+1)+2{x}_{1}{x}_{2}ln(1-{x}_{1})}{{x}_{2}}$=-(1+x1)+2x1ln(1-x1),
同理可得:$\frac{f({x}_{2})}{{x}_{1}}$=-(1+x2)+2x2ln(1-x2),
则$\frac{f({x}_{1})}{{x}_{2}}$-$\frac{f({x}_{2})}{{x}_{1}}$=(x2-x1)+2x1ln(1-x1)-2x2ln(1-x2),
=2x2-1+2(1-x2)lnx2-2x2ln(1-x2),
令g(x)=2x-1+2(1-x)lnx-2xln(1-x),x∈($\frac{1}{2}$,1),
求导,g′(x)=-2ln[x(1-x)]+$\frac{2}{x}$+$\frac{2x}{1-x}$,x∈($\frac{1}{2}$,1),
由x∈($\frac{1}{2}$,1),则$\frac{2}{x}$+$\frac{2x}{1-x}$>0,则g′(x)>0,
则g(x)在x∈($\frac{1}{2}$,1),上单调递增,
则g(x)>g($\frac{1}{2}$)=0,
则$\frac{f({x}_{1})}{{x}_{2}}$-$\frac{f({x}_{2})}{{x}_{1}}$>0,
∴$\frac{f({x}_{1})}{{x}_{2}}$>$\frac{f({x}_{2})}{{x}_{1}}$成立.

点评 本题考查导数的综合应用,考查导数与函数的单调及极值的关系,二次函数的性质,考查构造法,考查计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在公元前3世纪,古希腊欧几里得在《几何原本》里提出:“球的体积(V)与它的直径(D)的立方成正比”,此即V=kD3,欧几里得未给出k的值.17世纪日本数学家们对求球的体积的方法还不了解,他们将体积公式V=kD3中的常数k称为“立圆率”或“玉积率”.类似地,对于等边圆柱(轴截面是正方形的圆柱)、正方体也可利用公式V=kD3求体积(在等边圆柱中,D表示底面圆的直径;在正方体中,D表示棱长).假设运用此体积公式求得球(直径为a)、等边圆柱(底面圆的直径为a)、正方体(棱长为a)的“玉积率”分别为k1,k2,k3,那么k1:k2:k3=$\frac{π}{6}$:$\frac{π}{4}$:1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.“开门大吉”是某电视台推出的游戏节目,选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金,在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(Ⅰ)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称是否与年龄有关;说明你的理由:(下面的临界值表供参考)
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(Ⅱ)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,求3名幸运选手中在20~30岁之间的人数的分布列和数学期望.
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图是一个几何体的三视图,其中正视图和侧视图是高为2,底边长为$2\sqrt{2}$的等腰三角形,俯视图是边长为2的正方形,则该几何体的外接球的体积是4$\sqrt{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在圆中直径所对的圆周角是直角,有同学类比圆研究椭圆,把经过椭圆中心的弦叫做椭圆的直径.已知椭圆
C:$\frac{{x}^{2}}{3}$+y2=1,AB是椭圆C的直径.
(I )求椭圆C的离心率;
(Ⅱ)该同学用几何画板在椭圆C上取了几个点.通过测量发现毎一个点与A,B连线的斜率之积不变.耶么对于椭圆上任意一点M(M不与A,B重合),直线MA,MB的斜率之积是否为定值.若是.写出定值并证明你的结论;若不是请说明理由.
(III)O是坐标原点,M是椭圆上的一点且在第一象限.M关于原点的对称点为M′,E是x轴一点.△MOE是等等腰三角形.MO=ME,直线M′E与椭圆的另一个交点为N,求证:∠M′MN是直角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,角A,B,C所对的边分别为a,b,c,且a=2$\sqrt{3}$,b=$\sqrt{6}$,A=45°,那么角B的值为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.将一枚质地均匀的骰子抛掷两次,落地时朝上的点数之和为6的概率为(  )
A.$\frac{5}{36}$B.$\frac{1}{6}$C.$\frac{1}{12}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=1+2sin(2x-\frac{π}{3})$.

(Ⅰ)用五点法作图作出f(x)在x∈[0,π]的图象;
(2)求f(x)在x∈[$\frac{π}{4}$,$\frac{π}{2}$]的最大值和最小值;
(3)若不等式f(x)-m<2在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)为奇函数,当x<0时,f(x)=ln(-x)+2x,则曲线y=f(x)在点(1,f(1))处的切线方程是x-y+1=0.

查看答案和解析>>

同步练习册答案