精英家教网 > 高中数学 > 题目详情

【题目】某中学将100名高一新生分成水平相同的甲,乙两个平行班,每班50.陈老师采用AB两种不同的教学方式分别在甲,乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下,计成绩不低于90分者为成绩优秀”.

1)从乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均成绩优秀的概率.

2)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为成绩优秀与教学方式有关.

甲班(A方式)

乙班(B方式)

总计

成绩优秀

成绩不优秀

总计

附:临界值表

【答案】1 2)列联表见详解;有90%的把握认为成绩优秀与教学方式有关.

【解析】

1)利用列举法确定基本事件个数,由此能求出抽出的两个均成绩优秀的概率.

2)由已知数据能完成2×2列联表,据列联表中的数据,求出,所以有90%的把握认为成绩优秀与教学方式有关.

1)设抽出的两个均成绩优秀为事件

从不低于86分的成绩中随机抽取2个的基本事件为

.

而事件包含的基本事件:

,共.

所以所求概率为.

2) 由已知数据可得:

甲班(A方式)

乙班(B方式)

总计

成绩优秀

成绩不优秀

总计

根据2×2列联表中数据

所以有90%的把握认为成绩优秀与教学方式有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】101日,某品牌的两款最新手机(记为型号,型号)同时投放市场,手机厂商为了解这两款手机的销售情况,在101日当天,随机调查了5个手机店中这两款手机的销量(单位:部),得到下表:

手机店

型号手机销量

6

6

13

8

11

型号手机销量

12

9

13

6

4

(Ⅰ)若在101日当天,从这两个手机店售出的新款手机中各随机抽取1部,求抽取的2部手机中至少有一部为型号手机的概率;

(Ⅱ)现从这5个手机店中任选3个举行促销活动,用表示其中型号手机销量超过型号手机销量的手机店的个数,求随机变量的分布列和数学期望;

(III)经测算,型号手机的销售成本(百元)与销量(部)满足关系.若表中型号手机销量的方差,试给出表中5个手机店的型号手机销售成本的方差的值.(用表示,结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,,侧面底面

)作出平面与平面的交线,并证明平面

)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{}的首项a12,前n项和为,且数列{}是以为公差的等差数列·

1)求数列{}的通项公式;

2)设,数列{}的前n项和为

①求证:数列{}为等比数列,

②若存在整数mn(mn1),使得,其中为常数,且2,求的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到焦点的距离.

(1)求抛物线的方程;

(2)过点引圆的两条切线,切线与抛物线的另一交点分别为,线段中点的横坐标记为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某射击运动员在比赛前进行三周的封闭训练,教练员将其每天成绩的均值数据整理,并绘成条形图如下,

根据该图,下列说法错误的是:(

A.第三周平均成绩最好B.第一周平均成绩比第二平均成绩好

C.第一周成绩波动较大D.第三周成绩比较稳定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

1)若函数处取得极值,求a的值;

2)若函数的图象在直线图象的下方,求a的取值范围;

3)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数x与烧开一壶水所用时间y的一组数据,且作了一定的数据处理(如表),得到了散点图(如图).

表中.

1)根据散点图判断,哪一个更适宜作烧水时间y关于开关旋钮旋转的弧度数x的回归方程类型?(不必说明理由)

2)根据判断结果和表中数据,建立y关于x的回归方程;

3)若旋转的弧度数x与单位时间内煤气输出量t成正比,那么x为多少时,烧开一壶水最省煤气?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】铁人中学高二学年某学生对其亲属30人饮食习惯进行了一次调查,并用如图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主.)

(Ⅰ)根据茎叶图,帮助这位学生说明其亲属30人的饮食习惯;

(Ⅱ)根据以上数据完成下列的列联表:

主食蔬菜

主食肉类

合计

50岁以下人数

50岁以上人数

合计人数

(Ⅲ)能否在犯错误的概率不超过0.01的前提下认为其亲属的饮食习惯与年龄有关系?

附:.

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案