【题目】如图所示,在四棱锥中,底面是边长为2的正方形,侧面为正三角形,且面面, 分别为棱的中点.
(1)求证: 平面;
(2)(文科)求三棱锥的体积;
(理科)求二面角的正切值.
【答案】(1)见解析(2)(文) (理)
【解析】试题分析:(1)取中点,连结,由三角形中位线定理可得且,再由已知可得且,从而得到是平行四边形,则,然后利用线面平行的判定定理可得面;(2)取中点,连结,由面面垂直的性质可得面,且,求出到面距离,然后利用等积法求得三棱锥的体积;(3)连交于,可得,得到,进一步证得,可得是二面角的平面角,然后求解直角三角形可得二面角的正切值.
试题解析:
(1)证明:取PD中点G,连结GF、AG,
∵GF为△PDC的中位线,∴GF∥CD且,
又AE∥CD且,∴GF∥AE且GF=AE,
∴EFGA是平行四边形,则EF∥AG,
又EF⊥面PAD,AG⊥面PAD,
∴EF∥面PAD;
(2)(文)解:取AD中点O,连结PO,
∵面PAD⊥面ABCD,△PAD为正三角形,∴PO⊥面ABCD,且,
又PC为面ABCD斜线,F为PC中点,∴F到面ABCD距离,
故;
(理)连OB交CE于M,可得Rt△EBC≌Rt△OAB,
∴∠MEB=∠AOB,则∠MEB+∠MBE=90°,即OM⊥EC.
连PM,又由(2)知PO⊥EC,可得EC⊥平面POM,则PM⊥EC,
即∠PMO是二面角P-EC-D的平面角,
在Rt△EBC中,,∴,
∴,即二面角P-EC-D的正切值为.
【方法点晴】本题主要考查线面平行的判定定理、二面角的求法、利用等积变换求三棱锥体积,属于难题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且Sn=n﹣5an﹣85,n∈N+ .
(1)求an .
(2)求数列{Sn}的通项公式,并求出n为何值时,Sn取得最小值?并说明理由.(参考数据:lg 2≈0.3,lg 3≈0.48).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱A1B1C1 - ABC中,侧棱AA1丄底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是
A. CC1与B1E是异面直线 B. AC丄平面ABB1A1
C. A1C1∥平面AB1E D. AE与B1C1为异面直线,且AE丄B1C1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2016高考山东理数】平面直角坐标系中,椭圆C: 的离心率是,抛物线E:的焦点F是C的一个顶点.
(I)求椭圆C的方程;
(II)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.
(i)求证:点M在定直线上;
(ii)直线与y轴交于点G,记的面积为,的面积为,求 的最大值及取得最大值时点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=sin(x﹣30°)+cos(x﹣60°),g(x)=2sin2 .
(1)若α为第一象限角且f(α)= ,求g(α)之值;
(2)求f(x﹣1080°)≥g(x)在[0,360°]内的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知以点C为圆心的圆经过点A(﹣1,0)和B(3,4),且圆心在直线x+3y﹣15=0上.
(1)求圆C的方程;
(2)设点P在圆C上,求△PAB的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图半圆柱的底面半径和高都是1,面是它的轴截面(过上下底面圆心连线的平面),分别是上下底面半圆周上一点.
(1)证明:三棱锥体积,并指出和满足什么条件时有
(2)求二面角平面角的取值范围,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com