精英家教网 > 高中数学 > 题目详情
9.“?x∈R,x2-x≥0”的否定是(  )
A.?x∈R,x2-x<0B.?x∈R,x2-x≤0
C.$?{x_0}∈R,{x_0}^2-{x_0}≤0$D.$?{x_0}∈R,x_0^2-{x_0}<0$

分析 根据全称命题的否定是特称命题进行求解.

解答 解:全称命题的否定是特称命题,
则命题的否定是:?x0∈R,x02-x0<0,
故选:D.

点评 本题主要考查含有量词的命题的否定,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|2x+3|+|2x-1|.
(Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若关于x的不等式f(x)≤|3m+1|有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,边a,b,c分别为内角A,B,C的对边,且满足cos(A-B)=2sinAsinB.
(1)判断△ABC的形状;
(2)若a=3,c=6,CD为角C的角平分线,求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合A={x∈Z|x2≤4},B={x|x>-1},则A∩B=(  )
A.{0,1}B.{-1,0}C.{-1,0,1}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C所对的边分别为a,b,c,且$cosA=\frac{3}{4},C=2A$.
(1)求sinB的值;
(2)若a=4,求△ABC的面积S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,角A,B,C所对的边分别为a,b,c,且$cosC=\frac{1}{8},C=2A$.
(1)求cosA的值;
(2)若a=4,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.有下述说法:
①a>b>0是a2>b2的充要条件.
②a>b>0是$\frac{1}{a}<\frac{1}{b}$的充要条件.
③a>b>0是a3>b3的充要条件.
④a>b>0是$\sqrt{a}$>$\sqrt{b}$的充要条件.
则其中正确的说法有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.$\int_1^2{\frac{1}{x}}dx$等于(  )
A.ln2B.1C.$-\frac{1}{2}$D.e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一扇形的圆心角为60°,所在圆的半径为6,则它的面积是(  )
A.B.C.12πD.

查看答案和解析>>

同步练习册答案