精英家教网 > 高中数学 > 题目详情
由曲线x2+y2=
1
2
|x|+
1
2
|y|
围成的图形的面积为(  )
分析:通过分类讨论,画出图象,利用圆的面积计算公式和正方形的面积即可得出.
解答:解:当x≥0,y≥0时,曲线化为(x-
1
4
)2+(y-
1
4
)2=
1
8
;当x<0,y>0时,曲线化为(x+
1
4
)2+(y-
1
4
)2=
1
8

当x≤0,y<0时,曲线化为(x+
1
4
)2+(y+
1
4
)2=
1
8
;当x>0,y<0时,曲线化为(x-
1
4
)2+(y+
1
4
)2=
1
8

画出图象:
因此曲线x2+y2=
1
2
|x|+
1
2
|y|
围成的图形的面积S=2π×
1
8
+(2×
2
4
)2

=
π
4
+
1
2

故选D.
点评:熟练掌握圆的面积计算公式和正方形的面积、分类讨论的思想方法等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

拓展探究题
(1)已知两个圆:①x2+y2=1;②x2+(y-3)2=1,则由①式减去②式可得两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例.推广的命题为
已知两个圆:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,则由①式减去②式可得两圆的对称轴方程
已知两个圆:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,则由①式减去②式可得两圆的对称轴方程

(2)平面几何中有正确命题:“正三角形内任意一点到三边的距离之和等于定值,大小为边长的
3
2
倍”,请你写出此命题在立体几何中类似的真命题:
正四面体内任意一点到四个面的距离之和是一个定值,大小为棱长的
6
3
正四面体内任意一点到四个面的距离之和是一个定值,大小为棱长的
6
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2001•上海)已知两个圆:x2+y2=1 ①;x2+(y-3)2=1 ②,则由①式减去②式可得上述两个圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为
设圆方程(x-a)2+(y-b)2=r2 ①(x-c)2+(y-d)2=r2 ②(a≠c或b≠d),
由①-②,得两圆的对称轴方程
设圆方程(x-a)2+(y-b)2=r2 ①(x-c)2+(y-d)2=r2 ②(a≠c或b≠d),
由①-②,得两圆的对称轴方程

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州模拟)如图,由半圆x2+y2=1(y≤0)和部分抛物线y=a(x2-1)(y≥0,a>0)合成的曲线C称为“羽毛球形线”,且曲线C经过点(2,3).
(1)求a的值;
(2)设A(1,0),B(-1,0),过A且斜率为k的直线l与“羽毛球形”相交于P,A,Q三点,问是否存在实数k使得∠QBA=∠PBA?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网由曲线x2=2y,x2=-2y,x=2,x=-2围成的图形绕y轴旋转一周所得的旋转体的体积为V1;满足x2+y2≤4,x2+(y-1)2≥1,x2+(y+1)2≥1的点组成的图形绕y轴旋转一周所得的旋转体的体积为V2,试写出V1与V2的一个关系式
 

查看答案和解析>>

科目:高中数学 来源:2013年浙江省杭州市普通高中高三1月会考模拟数学试卷(解析版) 题型:解答题

如图,由半圆x2+y2=1(y≤0)和部分抛物线y=a(x2-1)(y≥0,a>0)合成的曲线C称为“羽毛球形线”,且曲线C经过点(2,3).
(1)求a的值;
(2)设A(1,0),B(-1,0),过A且斜率为k的直线l与“羽毛球形”相交于P,A,Q三点,问是否存在实数k使得∠QBA=∠PBA?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案