精英家教网 > 高中数学 > 题目详情

【题目】

(Ⅰ)求证:

(Ⅱ)求证:

(Ⅲ)在(Ⅱ)中的不等式中,能否找到一个代数式,满足所求式?若能,请直接写出该代数式;若不能,请说明理由.

【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析;(Ⅲ)答案见解析.

【解析】分析:Ⅰ)由题意结合绝对值不等式的性质即可证得题中的结论;

()由不等式的性质可证得..

()利用放缩法可给出结论:,

详解:Ⅰ)因为,且,所以,所以

()因为,所以.又因为,所以由同向不等式的相加性可将以上两式相加得.所以

所以.(i)

因为,所以由同向不等式的相加性可将以上两式相加得

所以(ii)

所以由两边都是正数的同向不等式的相乘性可将以上两不等式(i)(ii)相乘得.

()因为

所以,.(只要写出其中一个即可)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD中,ABCDCD=2,△ABC是边长为3的等边三角形.

(1)求AD

(2)求sinDAB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.

(Ⅰ)求证:MN∥平面BDE;
(Ⅱ)求二面角C﹣EM﹣N的正弦值;
(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为 ,求线段AH的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD

AC的中点O为球心,AC为直径的球面交PD于点M,交PC于点N.

(1)求证:平面ABM⊥平面PCD

(2)求直线CD与平面ACM所成角的大小;

(3)求点N到平面ACM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线的参数方程为为参数).以坐标原点为极点,以坐标原点为极点,轴的非负半轴为极轴,取相同的长度单位建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求直线的普通方程和曲线的直角坐标方程;

(Ⅱ)若曲线上的点到直线的最大距离为6,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(Ⅰ)求证:

(Ⅱ)求证:

(Ⅲ)在(Ⅱ)中的不等式中,能否找到一个代数式,满足所求式?若能,请直接写出该代数式;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面,四边形为矩形,的中点,的中点.

(1)求证:

(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若不等式时恒成立,求实数的取值范围;

(3)当时,证明:

查看答案和解析>>

同步练习册答案