精英家教网 > 高中数学 > 题目详情
16.已知${(2{x^3}-\frac{1}{x})^n}$的展开式的常数项是第7项,则正整数n的值为(  )
A.6B.7C.8D.9

分析 利用通项公式即可得出.

解答 解:${(2{x^3}-\frac{1}{x})^n}$的展开式的第7项=${∁}_{n}^{6}(2{x}^{3})^{n-6}(-\frac{1}{x})^{6}$=2n-6${∁}_{n}^{6}$x3n-24
令3n-24=0,解得n=8.
故选:C.

点评 本题考查了二项式定理的应用、方程思想,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设实数x,y满足约束条件$\left\{\begin{array}{l}x-2y-5≤0\\ x+y-4≤0\\ 3x+y-10≥0\end{array}\right.$,则z=x2+y2的最小值为(  )
A.$\sqrt{10}$B.10C.8D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2$\sqrt{2}$,AD=2,则四边形ABCD绕AD旋转一周所成几何体的表面积为(  )
A.(60+4$\sqrt{2}$)πB.(60+8$\sqrt{2}$)πC.(56+8$\sqrt{2}$)πD.(56+4$\sqrt{2}$)π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.${({x^2}-\frac{1}{2x})^6}$展开式中的常数项是$\frac{15}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知椭圆E的左、右焦点分别为F1、F2,过F1且斜率为2的直线交椭圆E于P、Q两点,若△PF1F2为直角三角形,则椭圆E的离心率为$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.以下说法正确的是(  )
①若x,y∈R,则“x=y“是“$xy≥{(\frac{x+y}{2})^2}$“的充要条件.
②命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题
③“x2+2x≥ax在x∈[1,2]恒成立”?“对于x∈[1,2],有(x2+2x)min≥(ax)max
④命题“若a=-1,则函数f(x)=ax2+2x-1只有一个零点”的逆命题为真命题.
A.①②B.①②④C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C的中心在坐标原点,一个焦点的坐标为$(\sqrt{3},0)$,椭圆C经过点P$(1,\frac{{\sqrt{3}}}{2})$.
(1)求椭圆C的方程; 
(2)设直线y=kx+b与椭圆C交于A,B两点,若|AB|=2,△AOB的面积S=1,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.正项等比数列{an}的前n项和为Sn,若${a_1}=1,\;{S_3}=\frac{7}{4}$,则a6=$\frac{1}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=lnx,g(x)=ax+$\frac{a-1}{x}$-3(a∈R).
(1)当a=2时,解关于x的方程g(ex)=0(其中e为自然对数的底数);
(2)求函数φ(x)=f(x)+g(x)的单调增区间;
(3)当a=1时,记h(x)=f(x)•g(x),是否存在整数λ,使得关于x的不等式2λ≥h(x)有解?若存在,请求出λ的最小值;若不存在,请说明理由.(参考数据:ln2≈0.6931,ln3≈1.0986).

查看答案和解析>>

同步练习册答案