精英家教网 > 高中数学 > 题目详情

【题目】如图,四边形为矩形, 平面 .

(1)求证:

(2)若直线平面,试判断直线与平面的位置关系,并说明理由;

(3)若 ,求三棱锥的体积.

【答案】(1)见解析;(2)见解析;(3).

【解析】试题分析:(1)证明线线垂直,一般利用线面垂直判定与性质定理,经多次转化得到.在转化过程中注意利用平几知识.(2)实质判断平面平面之间关系,由线线平行可得线面平行,再由线面平行可得面面平行,(3)求三棱锥体积,关键确定高线,而寻找高的方法,一是利用等体积法进行转换,二是利用线面垂直.

试题解析:(1)因为底面

所以底面,所以

又因为底面为矩形,所以,又因为,所以平面

所以.

(2)若直线平面,则直线平面,证明如下:

因为,且平面 平面,所以平面.

在矩形中, ,且平面 平面,所以平面.

又因为,所以平面平面.

又因为直线平面,所以直线平面.(3)易知,三棱锥的体积等于三棱锥的体积.

由(2)可知, 平面,又因为,所以平面

易知, 平面,所以点到平面的距离等于的长.

因为 ,所以

所以三棱锥的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为万元,且.

1)写出年利润W(万元)关于年产量x(千件)的函数解析式;

2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入年总成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过点,且与轴、轴都交于正半轴,当直线与坐标轴围成的三角形面积取得最小值时,求:

(1)直线的方程;

(2)直线l关于直线m:y=2x-1对称的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位共有老、中、青职工430,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

是函数的极值点,1是函数的一个零点,求的值;

时,讨论函数的单调性;

若对任意,都存在,使得成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆锥的轴截面是等腰直角三角形,底面半径为1,点是圆心,过顶点的截面与底面所成的二面角大小是.

1)求点到截面的距离;

2)点为圆周上一点,且中点,求异面直线所成角的大小.(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆.

(Ⅰ)设直线被圆所截得的弦的中点为,判断点与圆的位置关系;

(Ⅱ)设圆被圆截得的一段圆弧(在圆内部,含端点)为,若直线与圆弧只有一个公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(Ⅰ)若函数有零点,求实数的取值范围;

(Ⅱ)若对任意的,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的有______.

.

②已知,则.

③函数的图象与函数的图象关于原点对称.

④函数的递增区间为.

查看答案和解析>>

同步练习册答案