【题目】已知函数与都是定义在上的奇函数, 当时,,则(4)的值为____.
【答案】2
【解析】
根据题意,由f(x﹣1)是定义在R上的奇函数可得f(x)=﹣f(﹣2﹣x),结合函数为奇函数,分析可得f(x)=f(x﹣2),则函数是周期为2的周期函数,据此可得f()=f()=﹣f(),结合函数的解析式可得f()的值,结合函数的奇偶性与周期性可得f(0)的值,相加即可得答案.
根据题意,f(x﹣1)是定义在R上的奇函数,则f(x)的图象关于点(﹣1,0)对称,
则有f(x)=﹣f(﹣2﹣x),
又由f(x)也R上的为奇函数,则f(x)=﹣f(﹣x),且f(0)=0;
则有f(﹣2﹣x)=f(﹣x),即f(x)=f(x﹣2),
则函数是周期为2的周期函数,
则f()=f()=﹣f(),又由f()=log2()=﹣2,则f()=2,
f(4)=f(0)=0,
故f()+f(4)=2+0=2;
故答案为:2.
科目:高中数学 来源: 题型:
【题目】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:
满意 | 不满意 | |
男顾客 | 40 | 10 |
女顾客 | 30 | 20 |
(1)分别估计男、女顾客对该商场服务满意的概率;
(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?
附:.
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:过点,且椭圆的离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)斜率为的直线交椭圆于,两点,且.若直线上存在点P,使得是以为顶角的等腰直角三角形,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】太极是中国古代的哲学术语,意为派生万物的本源.太极图是以黑白两个鱼形纹组成的圆形图案,俗称阴阳鱼.太极图形象化地表达了阴阳轮转,相反相成是万物生成变化根源的哲理.太极图形展现了一种互相转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆被的图象分割为两个对称的鱼形图案,图中的两个一黑一白的小圆通常称为“鱼眼”,已知小圆的半径均为,现在大圆内随机投放一点,则此点投放到“鱼眼”部分的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下四个命题中,正确的题号是__________.
①函数的最值一定是极值;
②设:实数,满足;:实数,满足,则是的充分不必要条件;
③已知椭圆:与双曲线:的焦点重合,、分别为、的离心率,则,且;
④一动圆过定点,且与已知圆:相切,则动圆圆心的轨迹方程是.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市民用水拟实行阶梯水价,每人用水量中不超过立方米的部分按4元/立方米收费,超出立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:
(1)如果为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米, 至少定为多少?
(2)假设同组中的每个数据用该组区间的右端点值代替,当时,估计该市居民该月的人均水费.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是
A. 165 cmB. 175 cmC. 185 cmD. 190cm
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的两个焦点分别为F1(-1,0)、F2(1,0),短轴的两个端点分别为B1,B2
(1)若△F1B1B2为等边三角形,求椭圆C的方程;
(2)若椭圆C的短轴长为2,过点F2的直线l与椭圆C相交于P,Q两点,且,求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com