精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若m,n∈[﹣1,1],m+n≠0时,有 >0.
(Ⅰ)证明f(x)在[﹣1,1]上是增函数;
(Ⅱ)解不等式f(x2﹣1)+f(3﹣3x)<0
(Ⅲ)若f(x)≤t2﹣2at+1对x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数t的取值范围.

【答案】解:(Ⅰ)任取﹣1≤x1<x2≤1,

∵﹣1≤x1<x2≤1,∴x1+(﹣x2)≠0,
由已知
∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),
∴f(x)在[﹣1,1]上是增函数;
(Ⅱ)∵f(x)是定义在[﹣1,1]上的奇函数,且在[﹣1,1]上是增函数,
∴不等式化为f(x2﹣1)<f(3x﹣3),
,解得
(Ⅲ)由(Ⅰ)知f(x)在[﹣1,1]上是增函数,
∴f(x)在[﹣1,1]上的最大值为f(1)=1,
要使f(x)≤t2﹣2at+1对x∈[﹣1,1]恒成立,只要t2﹣2at+1≥1t2﹣2at≥0,
设g(a)=t2﹣2at,对a∈[﹣1,1],g(a)≥0恒成立,

∴t≥2或t≤﹣2或t=0
【解析】(Ⅰ)任取﹣1≤x1<x2≤1,则 ,由已知 ,可比较f(x1)与f(x2)的大小,由单调性的定义可作出判断;(Ⅱ)利用函数的奇偶性可把不等式化为f(x2﹣1)<f(3x﹣3),在由单调性得x2﹣1<3x﹣3,还要考虑定义域;(Ⅲ)要使f(x)≤t2﹣2at+1对x∈[﹣1,1]恒成立,只要f(x)max≤t2﹣2at+1,由f(x)在[﹣1,1]上是增函数易求f(x)max , 再利用关于a的一次函数性质可得不等式组,保证对a∈[﹣1,1]恒成立;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD. (Ⅰ)证明:平面A1AE⊥平面A1DE;
(Ⅱ)若DE=A1E,试求二面角E﹣A1C﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不交于同一点的三条直线l1:4x+y﹣4=0,l2:mx+y=0,l3:x﹣my﹣4=0
(1)当这三条直线不能围成三角形时,求实数m的值.
(2)当l3与l1 , l2都垂直时,求两垂足间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)和y=g(x)在[﹣2,2]上的图象如图所示.给出下列四个命题:
①方程f[g(x)]=0有且仅有6个根;
②方程g[f(x)]=0有且仅有3个根;
③方程f[f(x)]=0有且仅有5个根;
④方程g[g(x)]=0有且仅有4个根.
其中正确的命题的个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+2x﹣2﹣a(a≤0),
(1)若a=﹣1,求函数的零点;
(2)若函数在区间(0,1]上恰有一个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x),若a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”,已知函数f(x)= 是“可构造三角形函数”,则实数t的取值范围是( )
A.[0,+∞)
B.[0,1]
C.[1,2]
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中点.
(1)求证:CE∥平面PAD;
(2)若二面角P﹣AC﹣E的余弦值为 ,求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平行四边形中, 分别为 的中点,

平面.

(1)求证: 平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点轴上的一个定点,其横坐标为),已知当时,动圆过点且与直线相切,记动圆的圆心的轨迹为

(Ⅰ)求曲线的方程;

(Ⅱ)当时,若直线与曲线相切于点),且与以定点为圆心的动圆也相切,当动圆的面积最小时,证明: 两点的横坐标之差为定值.

查看答案和解析>>

同步练习册答案