(本题满分12分)如图,已知直平行六面体ABCD—ABCD中,AD⊥BD,AD=BD=a,E是CC的中点,A1D⊥BE.
(1)求证:AD⊥平面BDE;(2)求二面角B—DE—C的大小;(3)求点B到平面ADE的距离.
(Ⅰ) (Ⅱ) (Ⅲ)
:(1)∵直平行六面体ABCD—ABCD中,AA⊥面ABCD,
又∵AD⊥BD,∴AD⊥BD,又AD⊥BE,∴AD⊥平面BDE.
(2)连BC,∵AB平行且等于CD,∴BC平行且等于AD.
∵AD⊥BE,∴BC⊥BE,∴∠BBC=∠CBE,
∴Rt△BBC∽Rt△CBE,∴.
∵CE=BB,BC=AD=a,
∴BB=BC=a,∴BB=a,
取CD中点M,连BM,∵CD=a,∴BM=.
过M作MN⊥DE于N,连BN.
∵平面CD⊥平面BD,BM⊥CD,∴BM⊥平面CD,∴BN⊥DE,
∴∠BNM就是二面角B—DE—C的平面角,
∵sin∠MDN=, DE==,
∴MN=.
在Rt△BMN中,tan∠BNM=, ∴∠BNM=arctan.
即二面角B—DE—C等于arctan.
(3)∵AD⊥平面BDE,BN平面BDE,∴AD⊥BN,又∵BN⊥DE,∴BN⊥平面ADE,即BN的长就是点B到平面ADE的距离.
∵BM=a,MN=,∴BN==,即点B到平面ADE的距离为.
科目:高中数学 来源:2014届江西高安中学高二上期末考试理科数学试卷(解析版) 题型:解答题
(本题满分12分)
如图所示的几何体是由以正三角形为底面的直棱柱被平面所截而得. ,为的中点.
(1)当时,求平面与平面的夹角的余弦值;
(2)当为何值时,在棱上存在点,使平面?
查看答案和解析>>
科目:高中数学 来源:2012-2013学年湖北省八市高三3月联考理科数学试卷(解析版) 题型:解答题
(本题满分12分)如图,在长方体中,已知上下两底面为正方形,且边长均为1;侧棱,为中点,为中点,为上一个动点.
(Ⅰ)确定点的位置,使得;
(Ⅱ)当时,求二面角的平
面角余弦值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广西桂林中学高三7月月考试题理科数学 题型:解答题
(本题满分12分)如图,在四棱锥P—ABCD中,底面ABCD为正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中点,F是AD的中点.
⑴求异面直线PD与AE所成角的大小;
⑵求证:EF⊥平面PBC ;
⑶求二面角F—PC—B的大小..
查看答案和解析>>
科目:高中数学 来源:2011年湖南省招生统一考试文科数学 题型:解答题
(本题满分12分)
如图3,在圆锥中,已知的直径的中点.
(I)证明:
(II)求直线和平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源:2010年海南省高三五校联考数学(文) 题型:解答题
(本题满分12分)
如图,三棱锥S—ABC中,AB⊥BC,D、E分别为AC、BC的中点,SA=SB=SC。
(1)求证:BC⊥平面SDE;
(2)若AB=BC=2,SB=4,求三棱锥S—ABC的体积。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com