精英家教网 > 高中数学 > 题目详情

【题目】已知函数

求函数的单调区间

时,若函数在区间内单调递减,求的取值范围.

【答案】(Ⅰ)见解析;(Ⅱ) .

【解析】试题分析:(1)求导,对k分类讨论,得到函数的单调区间;(2)函数在区间内单调递减,即不等式在上成立,利用二次函数的图象与性质,易得的取值范围.

试题解析:

函数的定义域为.

,

(1)时,令,解得,此时函数为单调递增函数;

,解得,此时函数为单调递减函数.

(2)当时,

,即 时,

,解得,此时函数为单调递增函数;

,解得,此时函数为单调递减函数.

时, 恒成立,函数上为单调递增函数;

,即 时,

,解得,此时函数为单调递增函数;

,解得,此时函数为单调递减函数.

综上所述,

时,函数的单调递增区间为,单调递减区间为

函数的单调递增区间为 ,单调递减区间为

函数的单调递增区间为

函数的单调递增区间为 ,单调递减区间为.

因为函数内单调递减,所以不等式在上成立.

,则解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠CDA=∠BAD=90°,AB=AD=2DC=2 ,PA=4且E为PB的中点.
(1)求证:CE∥平面PAD;
(2)求直线CE与平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为等腰梯形, ,将沿折起,使得平面平面的中点,连接 (如图2).

(1)求证: ;

(2)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,an+1+an= ,n∈N*
(Ⅰ)求a2 , a3 , a4
(Ⅱ)猜想数列{an}的通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系为极点 轴正半轴为极轴建立极坐标系的极坐标方程为直线的参数方程为为参数),直线和圆交于两点 是圆上不同于的任意一点

(1)求圆心的极坐标;

(2)求点到直线的距离的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别是a,b,c.
(1)若a=2 ,A= ,且△ABC的面积S=2 ,求b,c的值;
(2)若sin(C﹣B)=sin2B﹣sinA,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点, 轴正半轴为极轴且取相同的单位长度建立极坐标系.已知点的参数方程为为参数),点在曲线上.

1)求在平面直角坐标系中点的轨迹方程和曲线的普通方程

2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,椭圆的左焦点为,右焦点为,点是椭圆上位于轴上方的动点,且,直线与直线分别交于两点

1)求椭圆的方程及线段的长度的最小值

2是椭圆上一点,当线段的长度取得最小值时,求的面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b是实数,函数f(x)=x|x﹣a|+b.
(1)当a=2时,求函数f(x)的单调区间;
(2)当a>0时,求函数f(x)在区间[1,2]上的最大值;
(3)若存在a∈[﹣3,0],使得函数f(x)在[﹣4,5]上恒有三个零点,求b的取值范围.

查看答案和解析>>

同步练习册答案