【题目】若函数在区间上的最大值是最小值是则
A. 与有关,且与有关 B. 与有关,但与无关
C. 与无关,且与无关 D. 与无关,但与有关
【答案】B
【解析】函数f(x)=x2+ax+b的图象是开口朝上且以直线x=﹣为对称轴的抛物线,
当﹣>1或﹣<0,即a<﹣2,或a>0时,
函数f(x)在区间[0,1]上单调,
此时M﹣m=|f(1)﹣f(0)|=|a+1|,
故M﹣m的值与a有关,与b无关
当≤﹣≤1,即﹣2≤a≤﹣1时,
函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,
且f(0)>f(1),
此时M﹣m=f(0)﹣f(﹣)=,
故M﹣m的值与a有关,与b无关
当0≤﹣<,即﹣1<a≤0时,
函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,
且f(0)<f(1),
此时M﹣m=f(1)﹣f(﹣)=1+a+,
故M﹣m的值与a有关,与b无关
综上可得:M﹣m的值与a有关,与b无关
故选B.
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,且椭圆过点,离心率;点在椭圆上,延长与椭圆交于点,点是中点.
(1)求椭圆C的方程;
(2)若是坐标原点,记与的面积之和为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(为自然对数的底, 为常数).
(Ⅰ)讨论函数的单调性;
(Ⅱ)对于函数和,若存在常数,对于任意,不等式都成立,则称直线是函数的分界线,设,问函数与函数是否存在“分界线”?若存在,求出常数;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在贯彻中共中央国务院关于精准扶贫政策的过程中,某单位定点帮扶甲、乙两个村各50户贫困户.为了做到精准帮扶,工作组对这100户村民的年收入情况、劳动能力情况、子女受教育情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标和,制成下图,其中“”表示甲村贫困户,“”表示乙村贫困户.
若,则认定该户为“绝对贫困户”,若,则认定该户为“相对贫困户”,若,则认定该户为“低收入户”;
若,则认定该户为“今年能脱贫户”,否则为“今年不能脱贫户”.
(1)从甲村50户中随机选出一户,求该户为“今年不能脱贫的绝对贫困户”的概率;
(2)若从所有“今年不能脱贫的非绝对贫困户”中选3户,用表示所选3户中乙村的户数,求的分布列和数学期望;
(3)试比较这100户中,甲、乙两村指标的方差的大小(只需写出结论).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个计算装置有两个数据输入端口I,II与一个运算结果输出端口III,当I,II分别输入正整数时,输出结果记为且计算装置运算原理如下:
①若I,II分别输入则
②若I输入固定的正整数II输入的正整数增大则输出的结果比原来增大
③若II输入I输入正整数增大则输出结果为原来的倍.则(1) = 为正整数);(2)(1)f(m,1)=__,(2)若由f(m,1)得出f(m,n),则满足f(m,n)=30的平面上的点(m,n)的个数是__.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从高一年级参加期末考试的学生中抽出50名学生,并统计了他们的数学成绩(满分为100分),将数学成绩进行分组,并根据各组人数制成如下频率分布表:
(1)写出的值,并估计本次考试全年级学生的数学平均分(同一组中的数据用该组区间的中点值作代表);
(2)现从成绩在内的学生中任选出两名同学,从成绩在内的学生中任选一名同学,共三名同学参加学习习惯问卷调查活动.若同学的数学成绩为43分,同学的数学成绩为分,求两同学恰好都被选出的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com