【题目】函数fn(x)=xn+bx+c(n∈Z,b,c∈R).
(1)若n=﹣1,且f﹣1(1)=f﹣1()=5,试求实数b,c的值;
(2)设n=2,若对任意x1,x2∈[﹣1,1]有|f2(x1)﹣f2(x2)|≤6恒成立,求b的取值范围.
【答案】(1)b=3,c=1;(2)﹣3≤b≤3.
【解析】
(1)由条件可得,的方程,解方程可得,;(2)当时,,对任意,,有恒成立等价于在,上的最大值与最小值之差.讨论对称轴和区间的关系,判断单调性,可得最值,解不等式即可得到所求范围.
(1)n=﹣1时,f﹣1(x)=x﹣1+bx+c,
且f﹣1(1)=f﹣1()=5,
可得1+b+c=5,3b+c=5,解得b=3,c=1;
(2)当n=2时,f2(x)=x2+bx+c,
对任意x1,x2∈[﹣1,1]有|f2(x1)﹣f2(x2)|≤6恒成立等价于
f2(x)在[﹣1,1]上的最大值与最小值之差M≤6.
①当1,即b>2时,f2(x)在[﹣1,1]递增,
f2(x)min=f2(﹣1)=1﹣b+c,f2(x)max=f2(1)=1+b+c,
M=2b>4,且2b≤6,可得2<b≤3;
②当﹣10,即0≤b≤2时,f2(x)在[﹣1,]递减,在(,1]递增,
f2(x)min=f2()=c,f2(x)max=f2(1)=1+b+c,M=(1)2≤6恒成立,故0≤b≤2;
③当01即﹣2≤b<0时,f2(x)在[﹣1,]递减,在(,1]递增,
f2(x)min=f2()=c,f2(x)max=f2(﹣1)=1﹣b+c,M=(1)2≤6恒成立,故﹣2≤b<0;
④当1,即b<﹣2时,f2(x)在[﹣1,1]递减,
f2(x)min=f2(1)=1+b+c,f2(x)max=f2(﹣1)=1﹣b+c,
M=﹣2b>4且﹣2b≤6,可得﹣3≤b<﹣2.
综上可得,b的取值范围是﹣3≤b≤3.
科目:高中数学 来源: 题型:
【题目】已知函数的图象与轴的交点中,相邻两个交点之间的距离为,且图象过点
(1)求的解析式;
(2)求函数的单调递增区间;
(3)将函数的图象向右平移个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,若关于的方程,在区间上有且只有一个实数解,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某地一天从时的温度变化曲线近似满足函数.
(1)求该地区这一段时间内温度的最大温差.
(2)若有一种细菌在到之间可以生存,则在这段时间内,该细菌最多能存活多长时间?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,若在其定义域内存在实数满足,则称函数为“局部奇函数”,若函数是定义在上的“局部奇函数”,则实数的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在第二届乌镇互联网大会中, 为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在、、三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有
A.种B.种
C.种D.种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲题型:给出如图数阵表格形式,表格内是按某种规律排列成的有限个正整数.
(1)记第一行的自左至右构成数列,是的前项和,试求;
(2)记为第列第行交点的数字,观察数阵请写出表达式,若,试求出的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com