精英家教网 > 高中数学 > 题目详情

若f(x)=(m-1)x2+6mx+2是偶函数,则f(0),f(1),f(-2)从小到大的顺序为


  1. A.
    f(-2)<f(1)<f(0)
  2. B.
    f(0)<f(1)<f(-2)
  3. C.
    f(-2)<f(0)<f(1)
  4. D.
    f(1)<f(0)<f(-2)
A
分析:f(x)=(m-1)x2+6mx+2若为偶函数,则表达式中显然不能含有一次项6mx,故m=0.再根据二次函数进行讨论它的单调性即可比较f(0),f(1),f(-2)大小.
解答:(1)若m=1,则函数f(x)=6x+2,
则f(-x)=-6x+2≠f(x),此时函数不是偶函数,所以m≠1
(2)若m≠1,且函数f(x)=(m-1)x2+6mx+2是偶函数,
则 一次项6mx=0恒成立,则 m=0,
因此,函数为 f(x)=-x2+2,
此函数图象是开口向下,以y轴为对称轴二次函数图象.
由其单调性得:f(-2)<f(1)<f(0)
故选A.
点评:函数奇偶性定义中f(-x)=f(x)(或f(-x)=-f(x)),包含两层意义:一是x与-x都使函数有意义,则定义域关于原点对称;二是f(-x)=f(x)图象关于y轴对称,f(-x)=-f(x)图象关于原点对称.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件:
①当x∈R时,f(x)的最小值为0,且图象关于直线x=-1对称;
②当x∈(0,5)时,x≤f(x)≤2|x-1|+1恒成立.
(1)求f(1)的值;
(2)求函数f(x)的解析式;
(3)若f(x)在区间[m-1,m]上恒有|f(x)-x|≤1,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设二次函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件:
①当x∈R时,f(x)的最小值为0,且图象关于直线x=-1对称;
②当x∈(0,5)时,x≤f(x)≤2|x-1|+1恒成立.
(1)求f(1)的值;
(2)求函数f(x)的解析式;
(3)若f(x)在区间[m-1,m]上恒有|f(x)-x|≤1,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省扬州市高一(上)期中数学试卷(解析版) 题型:解答题

设二次函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件:
①当x∈R时,f(x)的最小值为0,且图象关于直线x=-1对称;
②当x∈(0,5)时,x≤f(x)≤2|x-1|+1恒成立.
(1)求f(1)的值;
(2)求函数f(x)的解析式;
(3)若f(x)在区间[m-1,m]上恒有|f(x)-x|≤1,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建师大附中高一(上)期中数学试卷(解析版) 题型:解答题

设二次函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件:
①当x∈R时,f(x)的最小值为0,且图象关于直线x=-1对称;
②当x∈(0,5)时,x≤f(x)≤2|x-1|+1恒成立.
(1)求f(1)的值;
(2)求函数f(x)的解析式;
(3)若f(x)在区间[m-1,m]上恒有|f(x)-x|≤1,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建师大附中高一(上)期中数学试卷(解析版) 题型:解答题

设二次函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件:
①当x∈R时,f(x)的最小值为0,且图象关于直线x=-1对称;
②当x∈(0,5)时,x≤f(x)≤2|x-1|+1恒成立.
(1)求f(1)的值;
(2)求函数f(x)的解析式;
(3)若f(x)在区间[m-1,m]上恒有|f(x)-x|≤1,求实数m的取值范围.

查看答案和解析>>

同步练习册答案