精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=axlnx,x∈(0,+∞),其中a为实数,f′(x)为f(x)的导函数,若f′(1)=3,则a的值为(  )
A.4B.3C.2D.1

分析 求出f′(x),根据f′(1)=3,列出方程解出a.

解答 解:f′(x)=alnx+a,
∵f′(1)=3,∴a=3.
故选:B.

点评 本题考查了基本函数的导数及导数运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知P是双曲线$\frac{x^2}{9}$-$\frac{y^2}{16}$=1右支上任意一点,M是圆(x+5)2+y2=1上任意一点,设P到双曲线的渐近线的距离为d,则d+|PM|的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列选项中,与其他三个选项所蕴含的数学推理不同的是(  )
A.独脚难行,孤掌难鸣B.前人栽树,后人乘凉
C.物以类聚,人以群分D.飘风不终朝,骤雨不终日

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{1}{{3}^{x}+\sqrt{3}}$
(1)分别计算f(0)+f(1);f(-1)+f(2);f(-2015)+f(2016)的值;
(2)试根据(1)的结果归纳猜想出一般性结论,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=-2x2+ax-lnx(a∈R),g(x)=$\frac{ex}{{e}^{x}}$+3.
(I)若函数f(x)在定义域内单调递减,求实数a的取值范围;
(II)若对任意x∈(0,e),都有唯一的xo∈[e-4,e],使得g(x)=f(xo)+2xo2成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4.
(1)设$\overrightarrow{AD}$=λ$\overrightarrow{AB}$,异面直线AC1与CD所成角的余弦值为$\frac{{9\sqrt{10}}}{50}$,求λ的值;
(2)若点D是AB的中点,求二面角D-CB1-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=lnx与g(x)=a-x($\frac{1}{e}$≤x≤e)的图象上恰好存在唯一一个关于x轴对称的点,则实数a的取值范围为(  )
A.[1,e-1]B.{1}∪($\frac{1}{e}$+1,e-1]C.[1,$\frac{1}{e}$+1]D.($\frac{1}{e}$+1,e-1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,矩形ABCD与矩形ADEF所在的平面互相垂直,将△DEF沿FD翻折,翻折后的点E(记为点P)恰好落在BC上,设AB=1,FA=x(x>1),AD=y,则以下结论正确的是(  )
A.当x=2时,y有最小值$\frac{4\sqrt{3}}{3}$B.当x=2时,有最大值$\frac{4\sqrt{3}}{3}$
C.当x=$\sqrt{2}$时,y有最小值2D.当x=$\sqrt{2}$时,y有最大值2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.为了研究某种细菌在特定条件下随时间变化的繁殖情况,得到如表格所示实验数据,若t与y线性相关.
天数t(天)34567
繁殖个数y(千个)568912
(1)求y关于t的回归直线方程;
(2)预测t=8时细菌繁殖的个数.
(回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\sum_{i=1}^{n}{t}_{i}{y}_{i}$=217,其中$\sum_{i=1}^n{{t_i}{y_i}}$=217,$\sum_{i=1}^n{{t_i}^2}$=135)

查看答案和解析>>

同步练习册答案