精英家教网 > 高中数学 > 题目详情

若函数(e为自然对数的底数)=(   )

(A)0       (B)1         (C)2       (D)

 

【答案】

C

【解析】

试题分析:因为e>1,所以,所以选C.

考点:分段函数

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知h(x)=x2,φ(x)=2elnx(e为自然对数的底数).
(1)求F(x)=h(x)-φ(x)的极值;
(2)函数h(x)和φ(x)是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若存在实数k,b,使得函数f(x)和g(x)对其定义域上的任意实数x同时满足:f(x)≥kx+b且g(x)≤kx+b,则称直线:l:y=kx+b为函数f(x)和g(x)的“隔离直线”.已知f(x)=x2,g(x)=2elnx(其中e为自然对数的底数).试问:
(1)函数f(x)和g(x)的图象是否存在公共点,若存在,求出交点坐标,若不存在,说明理由;
(2)函数f(x)和g(x)是否存在“隔离直线”?若存在,求出此“隔离直线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳二模)对于具有相同定义域D的函数f(x)和g(x),若对任意的x∈D,都有|f(x)-g(x)|≤1,则称f(x)和g(x)在D上是“密切函数”.给出定义域均为D={x|0≤x≤4}的四组函数如下:
①f(x)=ln(x+1),g(x)=
2x
x+2
;   ②f(x)=x3,g(x)=3x-1;
③f(x)=ex-2x(其中e为自然对数的底数),g(x)=2-x;④f(x)=
2
3
x-
5
8
,g(x)=
x

其中,函数f(x)和g(x)在D上为“密切函数”的是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

若存在实常数k和b,使得函数F(x)和G(x)对其公共定义域上的任意实数x都满足:F(x)≥kx+b和G(x)≤kx+b恒成立,则称此直线y=kx+b为F(x)和G(x)的“隔离直线”.已知函数h(x)=x2,m(x)=2elnx(e为自然对数的底数),φ(x)=x-2,d(x)=-1.
有下列命题:
①f(x)=h(x)-m(x)在x∈(0,
e
)
递减;
②h(x)和d(x)存在唯一的“隔离直线”;
③h(x)和φ(x)存在“隔离直线”y=kx+b,且b的最大值为-
1
4

④函数h(x)和m(x)存在唯一的隔离直线y=2
e
x-e

其中真命题的个数(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数h(x)=x2,φ(x)=2elnx(e为自然对数的底).
(1)求函数F(x)=h(x)-φ(x)的极值;
(2)若存在常数k和b,使得函数f(x)和g(x)对其定义域内的任意实数x分别满足f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为函数f(x)和g(x)的“隔离直线”.试问:函数h(x)和φ(x)是否存在“隔离直线”?若存在,求出“隔离直线”方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案