精英家教网 > 高中数学 > 题目详情
(2013•韶关二模)在极坐标系中,过点A(1,-
π2
)引圆ρ=8sinθ的一条切线,则切线长为
3
3
分析:把圆的极坐标方程化为直角坐标方程,求出圆心和半径,根据直线和圆相切,故圆心到直线的距离等于半径4,即d=4.再求得AC的长度为 5,可得切线长为
r2-d2
的值.
解答:解:圆ρ=8sinθ 即 ρ2=8ρsinθ,化为直角坐标方程为 x2+y2=8y,即 x2+(y-4)2=16,
表示以(0,4)为圆心,半径等于4的圆.
点A(1,-
π
2
)的直角坐标为C(0,-1),由于直线和圆相切,故圆心到直线的距离等于半径4,即d=4.
AC的长度为 5,故切线长为
r2-d2
=3,
故答案为 3.
点评:本题主要考查把极坐标方程化为直角坐标方程的方法,求圆的切线长的方法,直线和圆的位置关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•韶关二模)函数f(x)=lnx-
1
x-1
的零点的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关二模)若a,b∈R,i为虚数单位,且(a+i)i=b+
5
2-i
,则a+b=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关二模)设点P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)与圆x2+y2=a2+b2在第一象限的交点,其中F1,F2分别是双曲线的左、右焦点,若tan∠PF2F1=3,则双曲线的离心率为
10
2
10
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关二模)已知椭圆
x2
a2
+
y2
a2-1
=1(a>1)的左右焦点为F1,F2,抛物线C:y2=2px以F2为焦点且与椭圆相交于点M(x1,y1)、N(x2,y2),点M在x轴上方,直线F1M与抛物线C相切.
(1)求抛物线C的方程和点M、N的坐标;
(2)设A,B是抛物线C上两动点,如果直线MA,MB与y轴分别交于点P,Q.△MPQ是以MP,MQ为腰的等腰三角形,探究直线AB的斜率是否为定值?若是求出这个定值,若不是说明理由.

查看答案和解析>>

同步练习册答案