精英家教网 > 高中数学 > 题目详情
设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是   
①m⊥α,n?β,m⊥n⇒α⊥β  ②α∥β,m⊥α,n∥β⇒m⊥n
③α⊥β,m⊥α,n∥β⇒m⊥n  ④α⊥β,α∩β=m,n⊥m⇒n⊥β
【答案】分析:根据有关定理中的诸多条件,对每一个命题进行逐一进行是否符合定理条件去判定,不正确的只需取出反例即可.
解答:解:①错,不符合面面垂直的判断定理的条件;
②由空间想象易知命题正确;
③错,两直线可平行;
④错,由面面垂直的性质定理可知只有当直线n在平面α内时命题才成立.
故答案为②
点评:本题主要考查了直线与平面之间的位置关系,以及平面与平面的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、设m,n是两条不同的直线,α,β,γ是三个互不相同的平面,给出下列命题:①若m?β,α⊥β,则m⊥α;②若α∩γ=m,β∩γ=n,α∥β,则m∥n;③若m∥n,m⊥α,n⊥β,则α∥β;④若α⊥γ,β⊥γ,则α∥β,其中正确的命题的序号为
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

8、设m,n是两条不同的直线,α,β,γ是三个不同的平面.有下列四个命题:
①若m?β,α⊥β,则m⊥α;
②若α∥β,m?α,则m∥β;
③若n⊥α,n⊥β,m⊥α,则m⊥β;
④若α⊥γ,β⊥γ,m⊥α,则m⊥β.
其中正确命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

5、4.设m、n是两条不同的直线,α、β是两相没的平面,则下列命题中的真命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•贵溪市模拟)设m、n是两条不同的直线α,β,γ,是三个不同的平面,下列四个命题中正确的序号是(  )
①若m⊥α,n∥α,则m⊥n     
②若α⊥γ,β⊥γ,则α∥β   
③若m∥α,n∥α,则m∥n    
④若α∥β,β∥γ,m⊥α,则m⊥γ

查看答案和解析>>

科目:高中数学 来源: 题型:

设m,n是两条不同的直线,α,β是两个不同的平面.考查下列命题,其中不正确的命题有
①③④
①③④
.(填上所有符合条件命题的序号)
①m⊥α,n?β,m⊥n⇒α⊥β;      ②α∥β,m⊥α,n∥β⇒m⊥n;
③α⊥β,m⊥α,n∥β⇒m⊥n;       ④α⊥β,α∩β=m,n⊥m⇒n⊥β.

查看答案和解析>>

同步练习册答案