精英家教网 > 高中数学 > 题目详情

(本小题满分8分) 某车间生产某机器的两种配件A和B,生产配件A成本费y与该车间的工人人数x成反比,而生产配件B成本费y与该车间的工人人数x成正比,如果该车间的工人人数为10人时,这两项费用y和y分别为2万元和8万元,那么要使这两项费用之和最小,该车间的工人人数x应为多少?

当车间的工人人数为5人时,两项费用之和最少。

解析试题分析:由题意可得 -----------------4分
设两项费用之和为y,则y=y1+y2=
 
当且仅当 -----------------8分
答:当车间的工人人数为5人时,两项费用之和最少。
考点:本题主要考查函数模型,均值定理的应用。
点评:中档题,首先构建函数模型,结合函数特征,灵活选用进一步求解的方法。应用均值定理“一正、二定、三相等”三条件缺一不可。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设关于x的方程=0.
(Ⅰ) 如果b=1,求实数x的值;
(Ⅱ) 如果,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

解方程:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂生产一种产品,已知该产品的月产量x吨与每吨产品的价格(元)之间的关系为,且生产吨的成本为(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了应对国际原油的变化,某地建设一座油料库。现在油料库已储油料吨,计划正式运营后的第一年进油量为已储油量的,以后每年的进油量为上一年年底储油量的,且每年运出吨,设为正式运营第n年年底的储油量。(其中
(1)求的表达式
(2)为应对突发事件,该油库年底储油量不得少于吨,如果吨,该油库能否长期按计划运营?如果可以请加以证明;如果不行请求出最多可以运营几年。(取

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算
(1)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
已知函数f (x)=| xa | + | x + 2 |(a为常数,且aR).
(Ⅰ)若函数f (x)的最小值为2,求a的值;
(Ⅱ)当a=2时,解不等式f (x)6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)不等式,当时恒成立.求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)设为非负实数,函数.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)讨论函数的零点个数,并求出零点.

查看答案和解析>>

同步练习册答案