精英家教网 > 高中数学 > 题目详情
17.建造一个容积为8m3、深2m的长方体无盖水池,池底任一边长度不得小于1m,如果池底和池壁的造价分别为120元/m2和80元/m2,总造价y(元)关于底面一边x(m)的函数解析式为f(x).
(1)求函数f(x)的解析式,并求出该函数的定义域;
(2)x取何值时,总造价最低?

分析 (1)通过水池的容积及深度可知水池底面面积为4m2,利用“总造价=池底造价+池壁造价”计算即得结论;
(2)利用基本不等式可知x+$\frac{4}{x}$≥4当且仅当x=2时取等号,进而计算可得结论.

解答 解:(1)依题意可知水池底面面积为$\frac{8}{2}$=4m2
则f(x)=120×4+80×2(2x+2×$\frac{4}{x}$)
=480+320(x+$\frac{4}{x}$),
∵池底任一边长度不得小于1m,
∴$\left\{\begin{array}{l}{x≥1}\\{\frac{4}{x}≥1}\end{array}\right.$,即该函数的定义域为{x|1≤x≤4};
(2)∵x+$\frac{4}{x}$≥2$\sqrt{x•\frac{4}{x}}$=4,当且仅当x=$\frac{4}{x}$即x=2时取等号,
∴当x=2时总造价最低为480+320(2+$\frac{4}{2}$)=1760元.

点评 本题考查函数模型的选择与应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.12个同类产品中含有2个次品,现从中任意抽出3个,必然事件是(  )
A.3个都是正品B.至少有一个是次品
C.3个都是次品D.至少有一个是正品

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C的中心在原点,焦点在x轴上,长轴长是短轴长的$\sqrt{2}$倍,且经过点M(2,$\sqrt{2}$).
(1)求椭圆C的方程.
(2)过圆O:x2+y2=$\frac{8}{3}$上任意一点作圆的一条切线交椭圆C于A,B两点.
①求证:OA⊥OB;
②求|AB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.两个半径分别为r1,r2的圆M,N,公共弦AB长为3,如图所示,则$\overrightarrow{AM}•\overrightarrow{AB}+\overrightarrow{AN}•\overrightarrow{AB}$=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2x,且f(a)=3,函数g(x)=2ax-$\frac{3}{2}$•9x
(1)求常数a的值,并求g(x)的解析式;
(2)当x∈[-2,1]时,求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=log2(x+$\sqrt{{x}^{2}+1}$),且f(1-a)+f(2+b)=0,又x≥1时恒有0≤x2+ax+b≤x3-1,则a•b的值等于-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2x,g(x)=$\frac{1}{{2}^{|x|}}$+2.
(I)求函数g(x)的值域;
(Ⅱ)解方程:f(x)=g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=lg(x-1)的定义域为(1,+∞).(用区间表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,已知PBD是⊙O的割线,PA、PC是⊙O的切线,A、C为切点,求证:
(1)PA•AB=PB•AD;
(2)$\frac{A{D}^{2}}{A{B}^{2}}$=$\frac{PD}{PB}$;
(3)AD•BC=AB•DC.

查看答案和解析>>

同步练习册答案