精英家教网 > 高中数学 > 题目详情
9.已知 tanβ=3计算下列各式的值:
(1)$\frac{sinβ-2cosβ}{5cosβ+3sinβ}$        (2)2sinβ•cosβ

分析 (1)原式分子分母除以cosβ,利用同角三角函数间基本关系化简,将tanβ的值代入计算即可求出值;
(2)原式分母看做“1”,利用同角三角函数间基本关系化简,将tanβ的值代入计算即可求出值.

解答 解:(1)∵tanβ=3,
∴分子分母除以cosβ后,
原式=$\frac{tanβ-2}{5+3tanβ}$=$\frac{1}{14}$;
(2)∵tanα=3,
∴原式=$\frac{2sinβ•cosβ}{{sin}^{2}β+{cos}^{2}β}$=$\frac{2tanβ}{{tan}^{2}β+1}$=$\frac{2×3}{9+1}$=$\frac{3}{5}$.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知数列{an}是各项均不为0的等差数列,Sn为其前n项和,且满足an2=S2n-1(n∈N+).若不等式$\frac{λ}{{{a_{n+1}}}}$≤$\frac{{n+8•{{(-1)}^n}}}{2n}$对任意的n∈N+恒成立,则实数λ的最大值为$-\frac{21}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知x2+y2=2x+8(x,y∈R),则4x2+5y2的最大值为64.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an},其前n项和为${S_n}={n^2}+n$
(Ⅰ)求a1,a2,a3
(Ⅱ)求{an}的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数y=tanωx(ω>0)在(-$\frac{π}{6}$,$\frac{π}{4}$)上单调递增,则ω的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知关于x的一元二次方程c(a-b)x2+b(c-a)x+a(b-c)=0有两个相等实根,求证:$\frac{1}{a}$+$\frac{1}{c}$=$\frac{2}{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在曲线y=x2(x≥0)上某一点A处作一切线使之与曲线以及x轴所围的面积为$\frac{1}{12}$,则这个切线方程是.(  )
A.y=-2x-1B.y=-2x+1C.y=2x-1D.y=2x+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.令g1(x)=g(x),${g_{n+1}}=g({g_n}(x)),n∈{N^+}$,请猜想出gn(x)的表达式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,已知四棱锥 V-ABCD的底面是边长为2正方形,侧面都是侧棱长为$\sqrt{5}$的等腰三角形,则二面角V-AB-C的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步练习册答案