精英家教网 > 高中数学 > 题目详情
曲线C是平面内与定点F(2,0)和定直线x=-2的距离的积等于4的点的轨迹.给出下列四个结论:
①曲线C过坐标原点;
②曲线C关于x轴对称;
③曲线C与y轴有3个交点;
④若点M在曲线C上,则|MF|的最小值为2(
2
-1)

其中,所有正确结论的序号是
 
分析:将所求点用(x,y)直接表示出来,然后根据条件列出方程即可求出轨迹方程,然后根据方程研究性质即可,多个变量求最值时常常用消元法,然后利用函数的单调性求最值.
解答:解:设动点的坐标为(x,y),
∵曲线C是平面内与定点F(2,0)和定直线x=-2的距离的积等于4的点的轨迹,
(x-2)2+y2
•|x+2|=4

∵当x=0时,y=0,∴曲线C过坐标原点,故①正确;
∵将
(x-2)2+y2
•|x+2|=4
中的y用-y代入该等式不变,
∴曲线C关于x轴对称,故②正确;
令x=0时,y=0,故曲线C与y轴只有1个交点,故③不正确;
(x-2)2+y2
•|x+2|=4

∴y2=
16
(x+2)2
-(x-2)2
≥0,解得-2
2
≤x≤2
2

∴若点M在曲线C上,则|MF|=
(x-2)2+y2
=
4
|x+2|
4
2+2
2
=2(
2
-1)
,故④正确.
故答案为:①②④.
点评:本题主要考查了轨迹方程,以及曲线的性质,对称性以及最值,同时考查了求轨迹方程的常用方法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

曲线C是平面内与两个定点F1(-1,0)和F2(1,0)的距离的积等于常数a2(a>1)的点的轨迹.给出下列三个结论:
①曲线C过坐标原点;
②曲线C关于坐标原点对称;
③若点P在曲线C上,则△F1PF2的面积不大于
12
a2
其中,所有正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线C是平面内与两个定点F1(-1,0)和F2(1,0)的距离的积等于常数a2(a>1)的点的轨迹,给出下列三个结论:
①曲线C过坐标原点;
②曲线C关于坐标原点对称;
③若点P在曲线C上,
则V F1PF2的面积不大于
1
2
a2正确的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线C是平面内与两个定点F1(-2,0)和F2(2,0)的斜率之积为
1
2
的点的轨迹,P为曲线C上的点.给出下列四个结论:
①直线y=k(x+2)与曲线C一定有交点;
②曲线C关于原点对称;
③|PF1|-|PF2|为定值;
④△PF1F2的面积最大值为2
2
.其中正确结论的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区二模)曲线C是平面内到定点A(1,0)的距离与到定直线x=-1的距离之和为3的动点P的轨迹.则曲线C与y轴交点的坐标是
(0,±
3
)
(0,±
3
)
;又已知点B(a,1)(a为常数),那么|PB|+|PA|的最小值d(a)=
a2-2a+2
,a≤-1.4或a≥1
a+4,-1.4<a≤-1
2-a,-1<a<1.
a2-2a+2
,a≤-1.4或a≥1
a+4,-1.4<a≤-1
2-a,-1<a<1.

查看答案和解析>>

同步练习册答案