分析 分离常数法化简f(x)=$\frac{{2}^{x}+2a-1}{{2}^{x}+1}$=1+$\frac{2a-2}{{2}^{x}+1}$,从而可得0<$\frac{2-2a}{{2}^{x}+1}$<$\frac{1}{2}$,从而解得.
解答 解:∵f(x)=$\frac{{2}^{x}+2a-1}{{2}^{x}+1}$
=1+$\frac{2a-2}{{2}^{x}+1}$∈($\frac{1}{2}$,1),
∴0<$\frac{2-2a}{{2}^{x}+1}$<$\frac{1}{2}$,
∴2-2a=$\frac{1}{2}$,
∴a=$\frac{3}{4}$;
故答案为:$\frac{3}{4}$.
点评 本题考查了分离常数法的应用及函数的值域的求法应用.
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{5}+2}{2}$ | B. | $\frac{\sqrt{5}+1}{2}$ | C. | $\frac{\sqrt{5}-2}{2}$ | D. | $\frac{\sqrt{5}-1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,1) | B. | (1,+∞) | C. | ($\frac{1}{2}$,+∞) | D. | ($\frac{1}{2}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com