精英家教网 > 高中数学 > 题目详情
2.若直线ax+(2a-3)y=0的倾斜角为45°,则a=1.

分析 利用倾斜角先求出斜率,由此能求出a的值.

解答 解:∵直线ax+(2a-3)y=0的倾斜角为45°,
∴$\frac{a}{3-2a}$=tan45°=1.
解得a=1,
故答案为:1

点评 本题考查实数值的求法,是基础题,解题时要注意直线的倾斜角和直线的斜率间打互关系的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知数列{an}满足an=$\left\{\begin{array}{l}{(\frac{1}{3}-a)n+8,n>8}\\{{a}^{n-7},n≤8}\end{array}\right.$,若对于任意的n∈N*都有an>an+1,则实数a的取值范围是(  )
A.(0,$\frac{1}{3}$)B.(0,$\frac{1}{2}$)C.[$\frac{1}{2}$,1)D.($\frac{1}{3}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一个四面体的顶点都在球面上,它们的正视图、侧视图、俯视图都是如图.图中圆内有一个以圆心为中心边长为2的正方形.则这个四面体的外接球的表面积是(  )
A.B.C.12πD.14π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设z=$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,则z+z2-z3=(  )
A.2zB.-2zC.2$\overline{z}$D.-2$\overline{z}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.以(2,-1)为圆心且与直线x-y+1=0相切的圆的方程为(  )
A.(x-2)2+(y+1)2=8B.(x-2)2+(y+1)2=4C.(x+2)2+(y-1)2=8D.(x+2)2+(y-1)2=4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow{AB}$=(1,2,1),$\overrightarrow{AC}$=(0,1,-2),则平面ABC的一个法向量可以是(  )
A.(5,-2,-1)B.(-6,2,2)C.(3,1,-2)D.(4,-3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设p:以抛物线C:y2=kx(k>0)的焦点F和点M(1,$\sqrt{2}$)为端点的线段与抛物线C有交点,q:方程$\frac{x^2}{{13-{k^2}}}$+$\frac{y^2}{2k-2}$=1表示焦点在x轴上的椭圆.
(1)若q为真,求实数k的取值范围;
(2)若p∧q为假,p∨q为真,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知曲线C的极坐标方程是ρ=2cosθ,若以极点为平面直角坐标系的原点,极轴为x轴的正半轴,且取相同的单位长度建立平面直角坐标系,则直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+m}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数).
(1)求曲线C的直角坐标方程与直线l的普通方程;
(2)设点P(m,0),若直线l与曲线C交于A,B两点,且|PA|•|PB|=1,求非负实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=($\frac{1}{{a}^{x}-1}$+$\frac{1}{2}$)x3(a>0,a≠1).
(1)讨论函数f(x)的奇偶性;
(2)求a的取值范围,使f(x)+f(2x)>0在其定义域上恒成立.

查看答案和解析>>

同步练习册答案